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INTRODUCTION: DEBLACKBOXING COMPUTER 
SYSTEMS AS SEMIOTIC SYSTEMS

Computing and semiotics have been inextricably connected since the late seventeenth 
century. The intellectual history of computation is not a story about machines, but about 
discoveries in the structures of symbolic thought, specifically how the patterns of necessary 
reasoning in logic and mathematics can be formally symbolized at different levels of 
abstraction, and then physically ‘operationalized’ by assigning symbolic structures to 
physical structures. As leading historians of computing explain,

The modern computer was not the inevitable outcome of technological advance. The 
crucial prerequisite for the useful application of technology to computing was the 
development of notation, or language systems, sufficiently comprehensive to satisfy 
both the need for representation, and the need to express and implement mechanisms 
for the transformation of expressions in the language. […] The real intellectual origin 
of the modern computer has much deeper roots in the themes of representation and of 
automatic methods of symbolic transformation.

(Campbell-Kelly and Russ 1994: 701, 703)

These special ‘language systems’ for ‘automatic methods of symbolic transformation’ 
(what we know as computer code + data) extend back to what Leibniz called a ‘mechanical 
thread’ (thinking with symbols that represent necessary patterns in logic and mathematics). 
We can trace this ‘thread’ from the era of Leibniz’s philosophy of symbols, his model for 
an arithmetical calculator, and a method for calculating with the binary (base 2) number 
system, including his design for the first binary calculator (c. 1700),1 through the era of 
Charles Babbage, George Boole and C. S. Peirce (1830s–1910s) (origins of formal logic 
and mechanical calculating ‘engines’) (Gabbay and Woods 2004), and on to the era of 
modern mathematical logic, the foundations of the modern electronic computing era, 
and digital information (1930s–50s) (Gabbay et al. 2014). Leibniz’s ‘thread’ appears in 
all physical devices designed to implement symbolic processes by assigning and delegating 
their representations and operations (mapped out in special symbols) to intentionally 
designed, corresponding components (Hilton 1963; Davis 2012; von Plato 2017).

Semiotics in Computing and 
Information Systems

MARTIN IRVINE

CHAPTER NINE
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204	 BLOOMSBURY SEMIOTICS: VOLUME 2

The words compute and calculate were synonymous until recently. Both are derived 
from Latin words that refer to methods for counting with number symbols and doing 
arithmetic, and the term computer originally meant a person who did calculations with 
numbers and other formal symbols (Grier 2005). In fact, all designs for physical ‘computer 
systems’ (both earlier and modern) are extrapolations from how human computers in 
the nineteenth and early twentieth centuries worked out calculations with numbers, 
notation systems, formulas, calculating devices and reference books with ‘look-up’ 
tables of logarithms, trigonometry formulas and other pre-calculated values, to perform 
‘computations’. Human computers are the models for the first CPUs (Central Processing 
Units) in digital computers: a coordinating agency for interpreting data representations 
as ‘inputs’, applying step-by-step, rule-governed operations (logic ‘outsourced’ to logic 
circuits), then ‘outputting’ (writing out) results in further sets of symbols, and repeating 
the process as needed. C. S. Peirce was an expert in these methods, and both his scientific 
work as a ‘computer’ and his theoretical work in mathematics and logic became the 
foundation for his semeiotic.

The modern digital electronic computing era has all this history ‘built in’, and our 
‘computers’ became technically possible with the unanticipated convergence of research 
and development in mathematics, logic, telecommunications and electrical engineering in 
the 1930s–40s (Ceruzzi 1983, 2003; Campbell-Kelly and Aspray 2014). This convergence 
was directly motivated by a core semiotic problem, one that weaves Leibniz’s ‘thread’ 
through many layers of complex design solutions: granted that we want to use electrical 
signals and components for speed and scalability in computation, how can we structure 
electricity and physical components to represent tokens of symbols to be computed, and 
then assign operations (necessary interpretations) that ‘go with’ the symbol tokens, and 
direct the system to transform the tokens as first represented (‘inputs’) into new tokens 
that represent the values or meanings as ‘computed results’ (‘outputs’), in a controlled, 
automatic process? The design solution for this semiotic problem is the story of modern 
computing, right down to all the devices, networks and media we use today. As Licklider 
explained:

Digital computers deal essentially with discrete patterns that may represent names or 
pictures quite as readily as numbers, and […] numerical calculation is merely one of 
many things that processors of discrete patterns can do. For our purposes, it is beside 
the point that the main early applications of digital computers were numerical. It is 
more significant that textbooks now call them ‘general symbol processors’.

(Licklider 1968: 274)

How we get from the earlier room-size ‘number crunching’ electronic computers of 
the 1950s–60s to our contemporary computer systems for ‘general symbol processing’ is 
a story of applied semiotics:

[T]he domain of computation actually comprises symbols – by which I mean things 
that represent other things (for example, a string of alphabetic characters) […] The act 
of computation is, then, symbol processing: the manipulation and transformation of 
symbols. Numbers are just one kind of symbol; calculating is just one kind of symbol 
processing. And so, the focus of automatic computation, Babbage’s original dream, is 
whether or how this human mental activity of symbol processing can be performed by 

9781350139329_txt_rev.indd   204 08-07-2022   17:05:36



SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 205

(outsourced to) machines with minimal human intervention. Computer science as the 
science of automatic computation is also the science of automatic symbol processing.

(Dasgupta 2014: 12)

We will unpack the assumptions about ‘symbol processing’ here, and complete this brief 
description to explain how computing now includes all digitally representable human 
symbol systems by filling in the details with C. S. Peirce’s semeiotic.

Since the 1960s, and more extensively since the 1990s, modern semiotics and computing 
theory intersect across a wide interdisciplinary field that includes research programs in 
computer science, systems theory and engineering, design theory, philosophy, cognitive 
science, linguistics, logic and mathematics, as well as interdisciplinary work in the field 
of semiotic studies.2 In this context, an important viewpoint is emerging: everything in 
computing and information systems is based on underlying design principles for semiotic 
systems, which include structures for interactions and communications between and 
among semiotic agents (human and delegated agents in software). This chapter provides 
an orientation to this exciting and expanding field of study.

The best way to make ‘computing and semiotics’ accessible for students and non-
specialists is through a unifying framework that reveals how semiotic functions are 
correlated with the design principles for computing systems, digital media, programming 
and software, and user interfaces. But because all the relevant disciplines are constituted 
by multiple schools of thought with varying terminology, we need a framework 
with a generally consistent vocabulary for making useful syntheses of concepts and 
semiotic principles regardless of the specialized terminology of any subdiscipline. A 
unifying semiotic framework can be provided by combining three interrelated views of 
computing that enable us to focus on universal design principles for computer systems as 
semiotic systems:

1.	 A Peircean semiotic systems view: extending and applying the key concepts in 
Peirce’s program of ‘Logic as Semeiotic’ (c. 1902–12) for the computing systems 
that his work anticipated.

2.	 The systems and design view: combining Peirce’s program for semeiotic with 
modern systems and design theory, as understood in all computing and information 
fields.

3.	 The cognitive-semiotic artefact view: defining the implemented designs in actual 
computer systems not as non-human ‘machines’ but as designed cognitive-semiotic 
artefacts, a view developed in cognitive science, anthropology and HCI (Human-
Computer Interface Design).

This combined framework provides a ‘deblackboxing’ method for discovering why 
and how computing systems are intentionally designed semiotic systems, even though 
semiotic principles are hidden from view (‘blackboxed’) in the implemented designs of 
computer systems as products. The conceptual metaphor ‘black box’ was originally an 
engineering term for any component designed to take in certain kinds of inputs (energy, 
signals, information, etc.) and convert them into specified outputs (e.g. a radio, a voltage 
transformer, a codec for converting digital into analog audio/video): the details inside 
the components can just stay ‘hidden’ (‘black-boxed’, ‘don’t need to know’, ‘built-in’), 
because only the outputs matter for the design purpose. The concept is now universally 
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206	 BLOOMSBURY SEMIOTICS: VOLUME 2

used in systems and software design: ‘blackboxing’ is used to hide the internal complexities 
of a module (at one functional level) that other modules in a system ‘don’t need to know 
about’ for using the outputs communicated to the system (see below on systems and design 
theory). But in our contemporary political economy for intellectual-property-protected 
products, this design principle is also used intentionally to close off access to computing 
systems in ‘black-boxed’ manufactured devices, which are intended to maintain ‘users’ 
as passive consumers blocked from understanding the universal semiotic principles on 
which the devices depend. A semiotic systems de-blackboxing method, then, is required 
for exposing the implemented design principles that are everywhere presupposed and 
actively instantiated, but, by historical accident, have been artificially closed off from 
users’ understanding.3

The semiotic deblackboxing method introduced here exposes that all our interactions 
with computer systems are possible only by means of intentional logical ‘mappings’ between 
the levels of symbolic structures (with their interpretation processes) and corresponding 
levels in the design of computer systems (see below on homology). Briefly, the principle 
of mapping (correspondence relations between systems, domains or contexts) is used at 
many conceptual levels in mathematics and logic (e.g. functions, sets, diagrams, category 
theory), computer system design, software design and data design (databases, metadata 
schemes). Further, intra-system mappings are implemented in the physical structures of 
our devices (e.g. pixel coordinates mapped to graphics memory locations). For Peirce, 
mapping is a form of diagrammatic thinking in which relations among different levels 
of abstraction can be iconically represented, and also materially instantiated in designed 
artefacts (e.g. in actual maps and instruments).4

The semiotic foundations of computing systems can be described with both technical 
and conceptual accuracy, regardless of how computers and everything digital may be 
described in merely instrumental and operational language. I will therefore always use the 
term ‘computer system’, rather than ‘computer’, to remind us that we are always talking 
about designed semiotic systems, and not reified objects or products.

The semiotic systems view also allows us to make implicit semiotic assumptions 
explicit, like mapping out the unconsciously operational grammar of any language. The 
intellectual history of mathematics, logic and computer system design is interwoven with 
implicit and tacitly presupposed theories of signs, symbols and symbolic processes, and 
the framework outlined here allows us to recover these implicit semiotic principles and 
make them explicit for our understanding today.5 As Peirce emphasized in many papers 
on disclosing the structures of logical inference in algebras and graphs, ‘it is the chief task 
of logic gradually to develop that which is implicit in thought and step by step to make 
it explicit, or, at least, to show how to do so’ (1897: MS 738.1). Peirce’s whole program 
of semeiotic is an application of this logical method, and we will follow a Peircean ‘step 
by step’ method that allows to make the implicit explicit by turning things inside-out, 
exposing how and why computer systems are designed semiotic systems, whether or not 
they are expressly recognized as such.

By using this method, readers will notice that many authors who describe computer 
systems, user interface design, digital media and interactive software assume an underlying 
‘symbolic systems’ view without presenting an explicit semiotic theory.6 Important 
work based on semiotic principles continues at the intersections of cognitive science, 
philosophy, theoretical computer science and AI,7 and all of this research and theory can 
be embraced and clarified in a unified Peircean semiotic systems view.
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SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 207

FRAMEWORKS FOR A SEMIOTIC SYSTEMS 
METHODOLOGY

Peirce’s Logic as Semeiotic and semiotic systems

Other chapters in this reference set provide an overview of Peirce’s semiotic theory (see esp. 
Vol. 1, Chps. 4 and 13), but for our context, I will focus on key concepts in Peirce’s works 
for describing computer and information systems as semiotic systems.

Our reference model for semiotic theory and computation will be Peirce’s last version 
of his research program, termed ‘Logic [Considered] as Semeiotic’, which he did not live 
to complete (1890s–1913, and intensively during 1904–12).8 Peirce’s semeiotic, which 
must not be confused with post-1960s semiotics, was developed in the context of his 
work in mathematics, logic and scientific research (documented in Eisele 1979, 1985, 
and papers in NEM).9

Peirce can be considered the first ‘computer scientist’ in that most of his papers during 
the Logic as Semeiotic period include extensive drafts of his formal symbolic systems 
for representing necessary reasoning, and analyses of the possibilities for automated 
reasoning and ‘logical (or reasoning) machines’. He envisioned semeiotic as a logical 
unification program for understanding the structure of all sign systems and symbolic 
reasoning, which was extensible to the logical-symbolic design principles of algebraic 
notation, graphs and diagrams, technical instruments and artefacts, logic machines, and 
all devices used for logical analysis and computation.

Peirce also had first-hand knowledge of the technologies and calculating machines of his 
era, and he designed his own scientific instruments that provided data for his computations. 
His contributions to Boolean logic and methods for formal symbolic notation became part 
of the symbolic logic tradition in the 1910s–30s,10 which in turn became the foundation 
for the formal symbolic ‘code’ used in the first programming languages, which is now 
‘baked in’ to the code libraries used in all contemporary programming languages. Peirce’s 
grounding in mathematics, logic, instrument design and the logic machines of his era 
make his semeiotic the best extensible model for understanding the semiotic principles in 
the design of the computing and media systems that we use every day.

The systems and design view

The key concepts in Peirce’s semeiotic can be readily combined with modern systems 
and design theory for developing consistent descriptions of computer and information 
systems as designed semiotic systems. This view requires a basic understanding of why 
and how digital computer systems are designed the way they are, rather than some other 
way.11 System design theory includes the method of levels of abstraction for composing 
and decomposing system functions in multiple, hierarchical, interconnected subsystems, 
each designed to implement functions at different levels or layers, all of which subserve 
the purposes of an overall architecture (the master design) of a larger complex system.12

The method of functional abstraction is essential because it allows us to design a 
complex multifunctional system not as a totalized whole, but by distributing functional 
levels to corresponding modular subsystems (like processor and memory functions, and 
hardware/software modules for graphics and audio/video). Each subsystem is designed to 
perform a function and communicate with other subsystems through interfaces (transfer 
gateways) in the architecture. Behind what we perceive at the user-facing levels, computer 
system design is a way of ‘orchestrating’ multiple unobservable levels of representation 
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208	 BLOOMSBURY SEMIOTICS: VOLUME 2

within the system, all supporting and returning to what we do observe, interpret and 
interact with.

An important pragmatist semiotic principle defined by Peirce underlies the unifying 
architecture of computer systems: the multiple levels of subsystems (also termed modules), 
from the most basic logic and memory components to software for representing interfaces 
for digital media, are designed to be ‘orchestrated’ as a telic (goal-directed, intentional, 
purposive) system. A computer system, by definition, must be an implementation of 
the purposes of semiotic agents (designers and users) directed into the whole system 
architecture. A computer system is made to exist only in service of the symbolic systems it is 
designed to instantiate, and the system is given telic direction in the way that metasymbolic 
programming code is designed to be interpreted as goal-directed operations in transition 
processes throughout the levels of the system (Gorn 1968, 1983; Horst 1996).

Recognizing how and why functional levels of abstraction are universally used in 
computer system architecture, digital information and software enables us to establish 
semiotic levels of description that directly correspond with design levels of computer 
systems. The designed systems view thus provides a key to making all the implicit and 
embodied semiotic principles explicit and systematically interpretable.

The cognitive-semiotic artefact view

Our framework reveals that ‘computers’ are not usefully defined as ‘machines’ at all. 
Combining concepts from cognitive science, philosophy of computation and anthropology, 
we find that computer systems are best defined as designs for cognitive-semiotic artefacts. 
An artefact, by definition, includes and presupposes its designers and makers. By making 
the principles for digital systems architecture accessible, we can reveal that a computer 
system is designed and implemented by and for semiotic agents.13

The cognitive artefact view also allows us to reveal how computer systems, information 
and networks exemplify what is now termed, in various fields, extended, distributed, 
delegated or off-loaded human cognition and agency.14 Because design principles for 
everything computational are telic (purposive), computer system designs exist only for 
implementing delegated processes of symbolic cognition, which must always include 
shared physical-perceptible representations and a provision for ongoing dialogic 
interpretation (which we realize in physical input/output devices, interactive interfaces and 
communication across networks). This view also allows us to recognize the deeper history 
of contemporary information systems as part of the longer continuum of technologies 
designed for representing, storing and transmitting symbolic systems in physical media.

This framework allows us to reveal how computer systems, in designed levels of 
subsystems, are structurally and constitutively semiotic, and thus different in kind from 
anything else we call machines designed to perform other kinds of functions. Table 9.1 
provides a system map for understanding computer systems levels and their corresponding 
implementations of semiotic levels.

Key concepts in Peirce’s semeiotic: Sign systems, symbols, technical implementations

Important theoretical developments in Peirce’s papers during his Logic as Semeiotic 
period apply directly to the design principles of modern computing systems, and it only 
a historical accident that the trajectory of thought developed in Peirce’s writings was 
interrupted and then rediscovered, in part, in the 1930s–50s.15 Peirce’s important work 
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SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 209

TABLE 9.1  Computer system levels: Overview of the semiotic system stack.

Computer systems 
architecture:
Subsystems, component 
modules

System functional levels:
Levels of abstraction

Semiotic levels of description

The top ‘user-facing’ level 
of multimedia interfaces 
mapped to input/output 
devices (screens, audio 
outputs) in continuous 
refresh cycles for projecting 
computational results and 
states of interaction.

Decoding and transducing 
digital data into analogue 
(human perceptible) 
substrates (screens 
and audio outputs), as 
projections from software 
processes and symbol 
system tokenization 
mapping design (e.g. pixel 
patterns).

Semiotic agents interpret 
physical tokens of symbolic 
types in interface media, and 
direct further interpretations 
and representations; 
dialogic interactive 
interpretation and ongoing 
symbolic representations 
are physically instantiated 
with computer systems as 
‘co-agents’.

GUI software/hardware 
mappings for interaction, 
conducting inputs/outputs to/
from system levels, and for 
dynamic updating of display 
and audio outputs.

Directing inputs (symbol 
token representations 
+ intentions) and 
outputs (interpreted 
representations) in ongoing 
recursive process.

Semiotic agents direct the 
input/output structures in 
the physical subsystems 
for enacting dialogic 
interpretations, which 
project up to next level.

Active software and data 
levels.
System modules orchestrate 
a ‘running’ software program 
by combining the levels of 
bytes in program code and 
bytes for data encoding (as 
indexed in different segments 
of active memory), for active 
operations on typed tokens.

Encoding symbol structures 
for data and operations 
(‘symbols that mean’ + 
‘symbols that do’) in binary 
‘machine interpretable’ byte 
representations in which 
operations transform tokens 
into new tokens in ongoing 
directed processes.

‘Source code’ program files 
(representing intentions in 
the metasymbolic code of a 
programming language) are 
translated by interpretant 
programs (compiler/
interpreter) into binary code 
for active processes to be 
directed by semiotic agents.

Binary information encoded 
and interpreted as both 
operations mappable to 
processors and as data types 
(data encoding for all forms 
of digital media) accessible in 
memory.

Binary representations 
differentiated and defined 
for system functions. Data 
types as interpretations of 
the contents of memory 
locations.

Digital (binary) information 
as semiotic subsystem 
for tokenization and 
typed representations. 
Tokenization and 
retokenization of digital 
data from/to storage and 
active system memory.

Physical system architecture 
modules: processors, 
memory units, storage 
devices, internal I/O (‘input/
output’), interfaces to upper 
level modules. The level of 
minimal binary information 
structures.

CPUs and GPUs for 
logic and programming 
instructions, and digital 
memory devices for holding 
long-term representations 
(storage), and short-
term (active RAM) data 
representations in physical 
locations indexed in the 
system.

Physical tokenization of 
symbolic structures for both 
data and operations. Every 
component at the first level 
implements a mapping 
of symbol structures and 
operations, the outputs of 
which are communicated 
‘up’ the system stack.
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on these topics has not yet been recovered for current research and theory. Some of the 
most important concepts are summarized here.16

Peirce frequently stated that his unified theory would embrace all forms of thought, 
reasoning and logic based on systems of ‘external signs’, including technologies designed 
to perform symbolic actions and relations (e.g. 1909: MS 637). He emphasized the 
constitutive physical-perceptible and cognitive-logical structures of all sign systems, and 
the necessity of a semiotic agency which activates triadic relations in ongoing generative 
interpretants. ‘[E]very reasoning is of the nature of a sign […] Sign will here be the general 
name for everything [used in reasoning], whether it be an instrument of music, a mental 
resolve, a voyage of discovery, or anything else that plays an essential part in the spread of 
intelligence’ (1907: MS 602.7–8; cf. 1904: MS 774, EP 2.326). Peirce continually refers 
to technologies that are based on semiotic and logical principles; for example:

Reason […] only acts through signs, spoken or written or ‘scribed’ or imagined. 
That which has made all our wonderful engines, wireless telegraphs, telephones, 
phonographs, and a thousand other wonders possible, has been the differential 
calculus, by which scientific men are instructed how to make the experiments that will 
be important. What is this ‘differential calculus’? It is a system of signs invented by the 
great philosopher Leibniz.

(c. 1911: MS 514.46–7)

Peirce had thorough knowledge of the electrical signals technology of his era: he 
designed measuring instruments that used electromagnetic switches (as in telegraph 
systems), he drew the first diagram for using electrical switches to perform Boolean logic 
operations (1886: W5.421–3, and see Gardner 1958; Ketner and Stewart 1984), and he 
developed a binary system for encoding and encrypting Morse code (c. 1902: MS 1361). 
Peirce clearly understood how binary logic maps onto switched electrical circuits, and 
how a binary mathematical code could be used for electrical signals, but these applied 
semiotic ideas had to wait for their application in the 1930s, when rediscovered by Claude 
Shannon for telecommunication networks and binary data (Shannon 1938; 1948).

Peirce also described how telecommunications signals create a semiotic subsystem that 
combines physical sign tokens, physical interpretants and human interpreters:

Every thought, or cognitive representation, is of the nature of a sign. ‘Representation’ 
and ‘sign’ are synonyms. The whole purpose of a sign is that it shall be interpreted in 
another sign; and its whole purport lies in the special character which it imparts to 
that interpretation. When a sign determines an interpretation of itself in another sign, 
it produces an effect external to itself, a physical effect, though the sign producing 
the effect may itself be not an existent object but merely a type. […] Some signs are 
interpreted or reproduced by a physical force or something analogous to such a force, 
simply by causing an event; as sounds spoken into a telephone effect variations or the 
rate of alternation of an electric current along the wire, as a first interpretation, and 
these variations again produce new sound-vibrations by reinterpretation [ … T]he rate 
of alternation of an alternating current along the wire [is] a series of variations making 
up a sign that interprets, i.e. translates, the acoustic sign, and in its turn setting up new 
acoustic vibrations in the receiver, as a reinterpretation.

(1904: MS 1476.4–5)
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SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 211

This statement is not only a summary of Peirce’s semiotic theory, but a clear example of 
how his semeiotic includes any technical design ‘that plays an essential part in the spread 
of intelligence’.

We continue to use electrical signals for tokenizing symbolic structures in digital 
electronics, for which digital-analogue decoders and transducers ‘translate’ the binary 
symbolic sequences to and from human perceptible forms (all audio and visual media). 
In fact, Peirce is describing the elements of the electrical signals system that became the 
foundation of modern telecommunications and information theory, and the electronic 
representations required for digital computing that soon followed. Solving the problem 
for physically retokening (reproducing) electrical signals in predictable structures is what 
gave us Claude Shannon’s information theory (measuring and quantizing information in 
digital bits), and, ultimately, gave us the internet packet design principles that solved the 
problem of retokening digital data units across unlimited network connections.

In his many discussions of the potential for automating necessary reasoning in formal 
symbol systems, Peirce continually emphasizes that such a system may be possible if it can 
be ‘self-controlled’ like human cognitive control over a logical process. Peirce explains 
that a symbol, as an intelligible representation given a physical existence in time,

may, in its capacity as such, produce effects in the material universe [ … It] can have a 
history, may be affected by associations with other signs, and gradually may undergo a 
great change of meaning, while preserving a certain self-identity. Indeed […] connected 
with suitable machinery or other physical organism, being able to produce external 
effects by virtue of its signification, [a symbol] may by one branch of its signification 
act upon another branch of its signification; and there we have the first step toward 
self-control.

(1905: MS 290.60)

This description is close to our concepts for data representations and the metasymbolic 
levels of code interpreted in a computer program. Further, since we can consider ‘that a 
man is a machine with automatic controls’ it could be possible to delegate rational self-
control in a design for a mechanical symbolic process: ‘This operation of self-control is a 
process in which logical sequence is converted into mechanical sequences […]. There is 
a class of signs in which the logical sequence is at the same time a mechanical sequence’ 
(1905: MS L 390.39).

These references are only a small sample from Peirce’s extensive writings on Logic 
as Semeiotic that reveal how the ideas for modern computing systems are based on a 
rediscovery of Peircean principles. In fact, as if answering Peirce’s requirement that an 
automated logical system must be a ‘self-controlled’, i.e. regulated as a telic (purposively 
directed) system, the design principles for modern computer architecture in the 1940s–50s 
solved the problem of internal logical control (CPUs), and interactive programming 
design since the 1970s solved the problem of semiotic agents controlling and directing 
running software as an active, ongoing, dialogic process. Peirce’s inclusive model of 
Logic as Semeiotic provides the semiotic structural details for describing modern digital 
computer systems as designed semiotic systems.

Table 9.2 presents a brief summary of important terms and concepts in Peirce’s writings 
on semeiotic in 1902–12 that apply directly to concepts used in modern computing 
systems.17
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TABLE 9.2  Important concepts in Peirce’s writings on Logic as Semeiotic (1902–12).

Triadic structure 
of signs/symbols in 
systems of relations

Peirce extends his concepts for triadic symbol structures for theory 
on the properties of physical instantiation and sign actions, kinds of 
interpretants, the interpretant function as a generative principle, and 
semiotic agency.

Type/Token 
Relation

From 1906 on, Peirce used the terms token (physical instance) and 
type (general abstract pattern) for the correlation of perceptible 
representations to intelligible symbolic forms (replacing his earlier 
terms). Anything symbolic must be tokenizable and retokenizable as 
shared cognitive anchors.

Physical properties 
of signs, and how 
signs can be used 
to cause physical 
actions

Peirce describes how all signs/symbols require instantiation as 
physical-temporal-perceptible and intersubjectively available 
representations. Peirce’s concepts (representamen, tokens, 
physical indices) can be generalized as the principle for physical 
structured substrates, which hold perceptible patterns. Symbols 
thus instantiated can be used to cause physical actions in a designed 
system.

The dialogic 
principle

Peirce extends the model of meaning-development in interpretants 
in human dialog to the steps performed in logic as interactive 
interpretation with diagrams, notation systems, and technical 
devices. Externalized structures (graphs, diagrams, notation systems 
for computation) that support dynamic interpretation for reasoning 
are termed Quasi-minds.

Symbols and 
metasymbols: 
Formalizing 
necessary reasoning 
and potential for 
automation

From the 1880s on, Peirce developed concepts for formal symbols 
and symbols used at different levels of abstraction, which (in modern 
terms) are metasymbols for logical operations, abstractions, syntax 
and inference rules, in both algebraic and diagrammatic (graph) 
notations. From 1902 on, he describes how assigning the rule-
governed operations of formal symbols to physical structures could 
enable automation in a self-controlled system.

Boolean logic and 
binary (base 2) 
number system

Peirce drew the first diagram for performing Boolean AND OR 
operations with electromagnetic switches (1886), and in the 
1880s–90s he became the leading American authority on Boolean 
symbolic logic. From 1904–12, he wrote hundreds of pages of 
mostly unpublished work on Boolean operations, the base 2 number 
system, and methods for binary computations.

HISTORIES OF DISCIPLINES

Major contributions to semiotics and computing, Leibniz to multimedia

There is a long intellectual history of semiotic thought before ‘semiotics’ as a post-1960s 
academic field (Eschbach and Trabant 1983; vols. 1–2 of Posner et al. 1997–2003), and 
this history is interwoven with a parallel history of computation (theory, design and 
implementation) before and after contemporary digital computers. Tracing the semiotic 
archaeology of computing with the framework presented here is important for our 
deblackboxing approach.
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TABLE 9.3  Major developments in computing and semiotics: Theory and 
implementations, Leibniz to the Internet.

1679–1710 G. W. Leibniz, philosophy of symbols and symbolic operations; designed 
calculating machine, and model for a binary (base 2) calculator.19 Leibniz 
was a major influence on C. S. Peirce.

1820–50 Charles Babbage develops mechanical Difference Engine and designs for 
the Analytical Engine (1820s–40s). Develops symbolic notation system for 
symbolic-mechanical homologies.

1832–37: Samuel Morse designs Telegraphic Code as proto-binary 
‘system of signs’ mapped to open/closed circuits in electromagnetic 
switches. The foundations for all future electronic communications.

1847–54: George Boole, Laws of Thought: the binary (two-value) algebra 
of logic.

1860s–1910s C. S. Peirce:

Develops and expands Boolean logic in algebraic and graphical systems 
for formal logic; develops a diagrammatic system of logic in ‘Existential 
Graphs’ (1880s–1912).

Designs Boolean logic switches for a ‘logical machine’, and publishes 
an article on the design of ‘Logic Machines’ (1886–7: W 5.421–6, W 
6.65–74).

Develops methods for binary (base 2) computation (1904–12).

Writes many drafts of papers for his unfinished program of ‘Logic as 
Semeiotic’ (1890s–1912), which includes semiotic concepts for technical 
systems.

1920s–30s Beginnings of ‘Information Theory’ in telecommunications and electrical 
engineering: techniques for ‘shaping signals’, controlling electrical current 
and radio waves as a semiotic subsystem for transmitting representations.

1930s–40s Alan Turing develops formal method for converting the steps in paper 
and pencil ‘computations’ into a discrete sequenced, automatable 
metasymbolic rule-governed process (1937).

Claude Shannon rediscovers how to apply Boolean logic to electrical 
switches (1938); a design previously developed by Peirce. This design 
is developed further in the 1950s for clusters of ‘logic gates’ in all 
computing processors (CPUs).

Charles Morris reinterprets Peirce’s semiotics and pragmatism; his 
writings become known in engineering and science communities (Morris 
1938, 1946, 1964)

Table 9.3 presents a conceptual overview of major developments in this combined 
history of theory and technical implementations so that the underlying semiotic systems 
design principles can become accessible for further study.18
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1940s Electrical engineering information theory and computer design theory 
converge.

Design principles for electronic computing system architecture first 
developed.

1945–48: John Von Neumann’s architecture for processor + memory 
units established (Von Neumann 1987).

Claude Shannon establishes the mathematical theory for discretizing 
information in electronics based on the binary bit as a substrate for 
information representations (1948).

Vannevar Bush, Memex (‘memory expander’): a design concept for 
bringing multiple symbol systems from different media into a unified, 
user-configurable desk ‘display’ (1945); a conceptual model for Engelbart 
and subsequent digital interface designs.

1950s–60s John von Neumann, Arthur Burks, and colleagues standardize computing 
architecture for automating logic, and applying the binary system for data 
and code.

Transition in computer science and engineering for reconceiving 
computer systems as general symbol processors for encoding any symbolic 
system, not merely ‘number crunchers’ (Hamming, Licklider, Engelbart, 
Newell and Simon).

Donald MacKay, papers on Information Theory and Symbolic Systems 
(1952–68) (MacKay 1969).

Colin Cherry, On Human Communication (1957), includes semiotic 
principles.

Allen Newell & Herbert Simon develop ‘physical symbol systems’ theory: 
(1961, 1972, 1976, 2003); and Newell (1980, 1986); Simon (1993, 1996).

1960s–70s J. C. R. Licklider, Doug Engelbart and Alan Kay redefine computing for 
multi-symbolic systems by developing engineering solutions for symbolic 
and interactive system concepts (see: Rheingold 2000; Moggridge 2007).

Licklider redefines computers as a metamedium for symbolic systems, 
interactions, communication, and knowledge; funds Doug Engelbart’s lab 
(1960–77).20

Ivan Sutherland, Sketchpad (1963): proof of concept for graphical 
interface systems with a screen input device; display screen reconceived as 
two-way interface.

Doug Engelbart, ‘Augmenting Human Intellect’ research program at SRI: 
computer systems redesigned as multi-symbol, cognitive, networked, 
interactive systems with integrative representational interfaces (Engelbart 
1963). Invents ‘mouse’ controller, windowing system and hyperlinking 
documents over networked system (1960–8).

Saul Gorn redescribes computer systems with pragmatist semiotics (Gorn 
1967, 1968, 1983).

Semiotics Societies established; Semiotics as an academic field of study 
formally begins.
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1970s 1972–7: Alan Kay, Dynabook concept for computers as a metamedium. 
Develops Object-Oriented Programming and symbolic interface systems at 
Xerox/PARC (Kay 1972, 1984; Kay and Goldberg 1977).

1977–9: Kay co-develops Xerox PARC, Star/Alto PCs: first graphical 
interface, multimedia ‘personal’ computer systems with window layers, 
hypertext linking, icons and mouse pointer device. Semiotic terms – type/
token, icon, index – are adopted in GUI design at Xerox/PARC.

ARPAnet – Internet (1970s–80s):

Data packet protocols, implementing metadata layers and extending 
information theory for digital tokenization of data across networks of 
networks. Internet architecture and TCP/IP embodies all the requirements 
of a semiotic subsystem for end-to-end encoding and decoding 
(transmission/ reception) of all data types in the client/server architecture 
of the Internet.

1970s–90s: Emerging interest in computing systems for semiotic theory 
(early studies by Nake, Nadin and Andersen).

1980s 1984: Apple Macintosh: consumer system version of Xerox/PARC 
interactive graphical system concepts (without networking).

‘Personal computer’ GUI and interactive software design principles are 
established across operating systems, and soon become standardized for 
the design of all consumer and business PCs.

Human Computer Interface design (HCI) becomes an interdisciplinary 
field (Shneiderman 1983, 1997; Norman and Draper 1986), combining 
computer science, design, programming, cognitive psychology, interaction 
theories and semiotic theory.

1990s 1991: Tim Berners-Lee develops the HTTP Web server system and 
HTML for hypertext linking among multiple networked documents as a 
protocol layer that uses the client/server architecture of the Internet.

1991: Unicode founded to standardize digital code for representations of 
written characters of all languages.

Digital media standards widely adopted for digitization of all symbolic 
types (text, graphics, image, photo, video, audio).

1993–5: Graphical hypermedia interface software for the Web (Mosaic, 
Netscape).

1994: Internet and Web opened to private development and consumer use.

Hypertext and hypermedia systems extend semiotic principles for indexical 
linking with the Internet client/server architecture as a subsystem.

HCI now includes Internet/Web multimedia design.

2000s– Internet and Web architectures scale and extend for all digital media and 
information services.

Internet-connected massively distributed computing systems (Cloud) 
become standard architecture.

AI and Machine Learning (ML) methods become viable with advances in 
computation and massive data sets.
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Research and theory on computation and information  
in semiotic studies: 1980s–present

There are multiple schools of thought and disciplinary contexts for semiotic theory, and, 
thus, for ‘semiotics and computing’. The ongoing topics of research and theory in the 
semiotic studies community and related fields since the 1980s are summarized in Table 
9.4, which presents representative work for points of entry in the field.

Several scholars have led the way in applying Peircean principles to the study of 
computer and information systems: the studies by Frieder Nake (1997, 2002, 2008a, 
2008b); Winfried Nöth (1997, 2002); Mihai Nadin (1988b, 1998, 2007, 2011); Peter 
Skagestad (1993, 1996, 1999); John Sowa (1984, 1991, 2000a, 2000b) and Joseph 

TABLE 9.4  Research and theory on semiotics and computing, 1980s to present.

Theories of computation:
Semiosis and symbolic 
systems;
Logic and computation;
Computational theories of 
mind

Ketner and Stewart (1984) | Ketner (1988)

Andersen, Holmqvist, Jensen (1993) | Skagestad (1996)

Fetzer (1997, 2001) | Andersen (1997) | Nöth (1997, 2002)

Andersen, Hasle, Brandt (1997) | Gudwin (1999)

Nadin (1998, 2007, 2011) | Ransdell (2003)

Rapaport (1999, 2012, 2018) | Sowa (2000a, 2006)

Gomes, Gudwin, El-Hani, Queiroz (2007)

Queiroz and Merrell (2009) | Tanaka-Ishii (2010)

Semiotic Foundations of 
Information Theory

MacKay (1969) | Gorn (1968, 1983) | Nadin (2011)

Kockelman (2017a, b)

Interface Design and
Interaction Programming

Engelbart (1988) | Shneiderman (1982)

Nadin (1988b, 1988a, 2017) | Kay (2001)

Goguen (Goguen 1999; Malcolm and Goguen 1999)

Goguen and Harrell (2005) | De Souza (2005)

Murray (2012)

Digital Media as a Semiotic 
System; Software and 
Digital Art

Nake (1999, 2002, 2008a, 2009; Nake and Grabowski 
2006) | Murray (2012) | Manovich (2013)

Knowledge Representation, 
Logic, and Conceptual 
Structures

Sowa (1984, 1991, 2000a, 2000b)

Meunier (1989, 1998) | Holmqvist, Klein, Posner (1996)

Semiotic Engineering 
Concepts

Liu (2000) | De Souza (2005) | Nadin (2017)

Sowa (2000a, 2011) | Barbosa and Breitman (2017)

AI, Cybernetic Systems, and 
Semiotic Models of Data

Fetzer (Fetzer 1988, 1997, 2001)

Skagestad (1993, 1996) | Agre (1995, 1997)

Jorna, Van Heusden, Posner (1993) | Ketner (2003)
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Goguen (Goguen 1999, 2003; Malcolm and Goguen 1999; Goguen and Harrell 2005) are 
foundational. Other important studies appeared in the 1990s–2000s (Fetzer 1988, 1997, 
2001, 2004; Andersen et al. 1997; Queiroz and Merrell 2009). The interdisciplinary 
scope of semiotics and computing now also includes work in anthropology and cognitive 
science (see Kockelman 2005, 2006, 2010, 2017a, 2017b).

METHODOLOGIES

Describing semiotic levels in the design of digital computing systems

With the framework outlined above and the knowledge base provided by the related 
disciplines, we can apply a semiotic deblackboxing method for describing how and why 
computer systems, software and digital media are semiotic systems, designed as systems of 
subsystems that serve human symbolic representation, interpretation and communication. 
With this method, we will also be able to discover our roles as semiotic agents, when 
everything computational and digital is restored to intelligibility as a semiotic system with 
purposiveness, agency and interpretability built in by design. Among the fundamental 
principles of computing and the necessary design features of digital systems, the following 
topics provide useful entry points for making semiotic principles explicit in a Peircean 
semiotic systems description.

Computation, automation and computer systems

Our current PCs and computing devices incorporate nearly a hundred years of design 
solutions for technical implementations of semiotic systems.21 We can summarize the 
semiotic systems view of the design solutions to the core semiotic problem. To create an 
electronic computer system for automating operations (interpretive processes) on types of 
symbols and produce new token instances representing interpretations, we need to design a 
physical system that will allow us to (1) introduce physical tokens of human intentional sign 
systems and register them internally in structures in the system (i.e. take in inputs through 
an interface), (2) implement logical operations (interpretations) assigned to those symbols as 
defined at other levels in the system, (3) direct the system processes to generate (retokenize) 
tokens for internal transitions in the operations and further tokens for what the ‘input’ 
tokens must be transformed into as a result (‘outputs’) of the interpretations, and then (4) 
project the ‘output’ tokens into perceptible and interpretable physical media (i.e. interfaces).

Further, having chosen the binary electronic architecture as the most efficient, we can 
use the same binary tokenization system to create byte representations of symbolic types 
(data), map the representations of human symbol systems (written characters, graphics, 
images, sounds) to indexed memory locations and assign to each symbolic type the 
pattern of interpretations (operations, relations, concept maps) that ‘go with’ the tokens 
instantiated in the system substrates.

Models of computation for digital systems have gone through several stages of 
development since the 1940s, each in parallel with developments in supporting 
subsystems (e.g. memory units, processors, displays): (1) the first systems were algorithmic 
calculating machines designed ‘run’ one terminating program at a time in a system that 
encoded ‘symbols that mean’ and ‘symbols that do’ in corresponding binary substrates 
(the finite state machine ‘input-output’ model, 1940s–50s), (2) computing expanded as 
‘general symbol processing’ designed to map any encodable symbol token structure and 
correlated patterns of interpretive ‘processing’ to binary memory units and processor 
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structures, and output corresponding representations to displays (screens) (1960s–70s) 
and (3) our current paradigm of interactive programming, dialogic graphical interfaces 
and networked, distributed computing in many layers of software, a macro design which 
subsumes earlier design stages. In our interactive paradigm, system levels are combined 
for dialogic processes, directed by agents who can continually modify, reinterpret and 
create new representations (1970s–present).

Many leaders in computer science today focus the definition of computing and 
computer science on the implicit semiotic principles of representations, interpretive 
transformations and information processing, and not on computers as machines.22 
‘Representation-transformation can be a reference model of computing. An information 
process is a sequence of representations’ (Denning 2012: 808–89). Further, the core of 
computation is not simply representation, but operationalizing symbolic structures so that 
they cause controlled actions as operations, that is, as rule-directed interpretations of 
representations. Many descriptions of computation today follow the same view of sign-
actions and symbolic processes that Peirce first developed:

Computing emphasizes the transformation of information, not simply its discovery, 
classification, storage, and communication. Algorithms not only read information 
structures, they modify them […]. [T]he structures of computing are not just 
descriptive, they are generative. An algorithm is not just a description of a method for 
solving a problem, it causes a machine to solve the problem. The computing sciences 
are the only sciences with such a strong emphasis on information causing action.

(Denning and Martell 2105: 16–17)

These are the assumptions that enable computer systems to become semiotic systems. 
Assumed human cognitive-semiotic agency is ‘built in’ to all system levels (by assignment 
or delegation), and is structurally anticipated in the design principles for interactive and 
networked systems.

The principle of Homology: The key to the physical symbolic system

There is a logical-semiotic ‘key’ for understanding why and how digital electronic 
computing systems can be designed to both instantiate physical symbolic representations 
(tokens of symbol types) and implement logical operations (perform assignable 
interpretations and instantiate further tokens) in a unified binary architecture. The key 
is in how the mathematical principle of homology (structural correspondence mapping 
between domains) can be used as a design principle; that is, by imposing a logical map of 
one-to-one correspondences between structures in symbolic systems and structures in an 
intentionally designed physical system.

Peirce defined the homological mapping principle in his writings on mathematics 
and cartography (map-making): a homology (from Greek: homo: like, same + logos: 
structure, form, ratio, meaning) describes correspondences representing equivalences 
in structure or form. ‘Homological, having a structural affinity: distinguished from 
analogical’ (1889–91: CD 2868). The principle of one-to-one correspondence distinguishes 
homology from simple analogy: ‘homologous is corresponding in a system of one-to-
one correspondence’ (1894–5: MS 165, NEM 2.217). ‘A correspondence is a system of 
relationship between two sets of objects which connects all the objects of the first set 
each with the same number of objects of the second set’, a definition also equivalent to 
an injective function in mathematics. Homology is closely parallel with the concept of 
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projection in geometry and map-making: ‘[a projection] is a system by which the points 
on the surface of the earth […] are made to correspond one to one to the points of a map’ 
(1894–5: MS 94, NEM 2.286). Homologies and mapping projections are applications 
of the larger concept of mathematical functions: ‘The theory of projections [ … may] 
be said to be simply the theory of functions viewed under the strong perspective of a 
practical standpoint’ (1889–91: CD 4763).

Digital computer systems as automated symbol processing systems would be impossible 
without this deeply assumed ‘practical standpoint’ for logical-symbolic mappings. A 
homology, used as a design principle, is a system of relations for mapping (or projecting) 
the structures of symbols and logic (represented in formal notation, graphs and diagrams) 
to intentionally corresponding physical structures, mapping one system onto or into 
another system (see Goguen 1999; Ambrosio 2014).23

Computer system architecture design provides the master plan for the homological 
mappings for each hardware and software subsystem so that the physical structures 
communicate back and forth, up and down, from and to, our input/output interfaces 
for interpretable token representations and communicating further semiotic agency 
into the system. This combination of internal and external physical substrates solves 
the core semiotic problem: how to ‘realize’ or ‘instantiate’ computations and symbolic 
representations in the physical affordances of the component structures (memory, 
processor units, user interfaces), electrical energy and time (Nisan and Schocken 2005; 
Denning and Martell 2015; Comer 2017; Rescorla 2017; see Table 9.5).

TABLE 9.5  Computer system homologies.

Symbolic structures Mapped to Physical structures

Data: ‘Symbols that mean’
Structures of our main symbol 
systems (e.g. text, image patterns) 
tokenized as physical patterns 
of bit/byte units with data type 
assignments.

⇒ Tokenization of symbols in substrates 
in long-term storage devices, and 
in substrates for active short-term 
representation arrays of binary cells in 
RAM memory and in processor units.

Program code: ‘Symbols that do’
Metasymbolic symbols in 
programs are coded for 
operations and interpretive 
processes on/for data tokens. 
‘Code’ is also tokenized in digital 
bit/byte units in a program file.

⇒ ‘Running code’ is projected from 
locations in active memory to processor 
units with arrays of binary logic ‘gates’ 
that perform operations on data tokens 
by first ‘reading’ input data tokens, and 
‘writing’ (tokenizing) results in memory.

Formal necessity
Programming code is a sign system 
for translating necessary relations 
in logic and math (represented in 
formal symbols and metasymbols) 
into binary encoded algorithms 
and logic in software that 
anticipate interpretation in the 
architecture of a computer system 
for performing computations as 
actions.

⇒ Physical causality
CPUs (and clusters of processors) 
translate the binary encoded 
representations in programs through 
arrays of physical logic gates into causal 
actions (interpretive processes) over 
physical (tokenized) data representations. 
CPU’s must also control and time-
sequence operation cycles for performing 
interpretive processes over physical time 
and spatial memory locations.
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But viewed at the software, interface and media representation levels, we only attend to 
the higher levels of abstraction (the ‘user-facing’ levels) in the telic design: the observable 
levels of outputs and inputs are directly mapped to the lower unobservable physical levels, 
which are designed to ‘communicate up’ through the system. This ‘stacking’ of levels 
enables designers, programmers and users to take ‘the logical equivalence of hardware 
and software’ for granted, as Saul Gorn lucidly explained (Gorn 1968). At our observable 
‘user’ levels, physical homologies are designed to disappear into pure functionality.

Mapping principles are used in many contexts in computer system design, but viewed 
at a macro, unifying level, the homologous mapping principle is what enables us to create 
automated computation by translating formal (symbolic) necessity (represented in code) 
into physical causality (in computing components). The recognition of the formal-to-
physical mapping principle, a Leibnizian ‘mechanical thread’, extends back to the formal 
symbolic logic systems developed by Peirce and his contemporaries in Boolean algebras 
and diagrammatic systems. The symbolic systems for formalizing necessary relations, 
developed from Peirce’s era to Turing’s in the 1930s, demonstrated that logical necessity 
could, in principle, be automated, provided that we can map the formal structures in a 
system of one-to-one correspondences for translating formal necessity into controlled 
physical causality (Robinson 1979; Robinson and Voronkov 2001; Rocchi 2013) 
(see Table 9.5). The mapping of formal metasymbolic structures (programming code) 
to physical architecture structures that perform actions is the sine qua non of digital 
electronic computation as a system of active, dynamic, interpretation processes.

Information and binary systems: Designing semiotic subsystems

‘Information theory’, as developed in electrical engineering, is an engineering solution to a 
semiotic problem: how can we impose a design on electrical current (and radio waves) for 
a system of predictable patterns that are invariant over places, times and material media, 
so that we can use the energy patterns to represent intentionally meaningful patterns in a 
communicable human sign system? Short answer: we can only efficiently impose this kind 
of controllable, predictable pattern on switched states of an electrical circuit: closed/open, 
on/off, voltage present/voltage absent. This is a binary, one-of-two-possible-states system, 
which maps exactly to the binary (base 2) number system and to the logical values in 
Boolean logic (T/F, yes/no). One unit of a switched state is a bit (binary unit); string them 
together in ordered patterns and we get bytes, which we can use to encode the structures 
of any digitized symbolic system. We implement the binary system map in matrices of 
miniature transistors (memory units) and chains of combined logic switches (logic ‘gates’ 
in processors). Digital information, then, is a design for a semiotic subsystem, a technique 
for tokenizing representations of symbolic structures in homologous physical substrates 
(mapping symbolic patterns to physical patterns).24

For an automated electronic computational system, then, only binary electronics allows 
us to create an exact system of one-to-one correspondences. This correspondence system 
allows us to (1) physically tokenize representations in formal-to-physical mappings in 
memory cells (bits and byte units: data) and (2) perform operations on representations by 
means of combinations of binary logic switches ‘hard-wired’ in millions of ‘logic gates’ in 
microprocessors. The combination of (1) and (2) is the definition of digital computation 
(see Table 9.5).

Computer system design also includes a method for managing levels and types of 
binary bit representations. At digital bit-level representations, both ‘data’ and ‘program 
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code’ are stored as binary data in memory units, but computer systems are designed to 
index and type memory locations so that the tokenized bits and bytes can be referenced 
and internally retokenized to function at their assigned symbolic levels. Bits/bytes only 
‘mean’ in a system of interpretation represented at another level, thus demonstrating the 
essential semiotic structure of all things digital.

Unlike other material substrates in the history of sign systems (spoken language, 
traditional writing materials, image supports, analogue media), digital information is 
structurally semiotic in that the subsystem requires applying abstract symbolic thought 
itself to impose a logical structure on materials and energy that are meaningless in 
themselves (Blanchette 2011; Abbott 2019; Patt and Patel 2020). The mapping principle 
followed in engineering processes for implementation in electronic components allows us 
to instantiate bits and bytes as structure-preserving structures (replicable and transmittable 
patterns), creating the predictable, controllable structures required for all data tokenizing 
systems, from what we input through our keyboards and mouse clicks to internet packets 
sent to initiate a remote Cloud computing data process.

Computers, symbol processing and semiotic architecture

Peirce’s semeiotic, which includes the principles for physical symbolic homologies and 
the logic of operations, allows us to complete and reframe the definitions of computers 
as ‘symbol systems’. Always aware of the necessity of physical instantiations of signs 
as shared cognitive anchors, Peirce also saw how sign systems, in ongoing patterns of 
representations and interpretations, can form semiotic ‘strata’ or levels of signs:

In consequence of every sign determining an Interpretant, which is itself a sign, we 
have sign overlying sign. The consequence of this, in its turn, is that a sign may, in 
its immediate exterior, be of one of the three classes [icon, index, symbol], but may 
at once determine a sign of another class. But this in its turn determines a sign whose 
character has to be considered. This subject has to be carefully considered, and order 
brought into the relations of the strata of signs.

(Minute Logic, MS 425 [1902]:134–5)

This description is an excellent starting point for understanding the sign-system levels in 
the physical tokenization of structures of symbolic types and the delegated interpretants 
in software, which combine to make a computer system a designed semiotic system. We 
need only add Peirce’s extensive treatment of symbolic operations and interpretations to 
fill in the model for digital computer systems and the ‘strata’ of signs for digital media 
representations managed in the homologous maps for information, processing and 
interactive interface representations.

A model for ‘symbol systems’ emerged the 1950s–70s, which became part of the 
discourse in computer science and AI. Allen Newell and Herbert Simon developed the 
‘physical symbol system’ model, which combined the computational theory of mind 
in cognitive science with the concepts of symbols, logic and rule-governed operations 
in computer science (Newell and Simon 1976; Haugeland 1981b; Simon 1996). The 
‘physical symbol system’ descriptions get us part way to a semiotic model, but the theory 
is based on an impoverished conception of signs and symbols, mostly modelled on the 
formal symbols of symbolic logic notation, with rules for logical operations and relations, 
that can be assigned in the computer architecture. The role of semiotic agency and 
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the function of interpretant relations in a full triadic symbol system model, in Peirce’s 
sense, are unaccounted for. However, the assumptions and terminology of the ‘physical 
symbol system’ hypothesis continue to inform arguments about symbols in theories of 
computation, cognition and AI (Marcus 2001; Nilsson 2007; Steels 2007; Conery 2012; 
Rapaport 2012).

We use the binary subsystems for byte patterns of all digitizable symbolic types and 
methods for representation; and, at the digital token level, a computer system is designed 
as a dynamic system of unlimited retokenization: ‘tokens in’ and new ‘tokens out’ in 
the managed ‘strata of signs’. As Haugeland explains, using Peirce’s terms, in his classic 
study of AI:

A computer is an interpreted automatic formal system. […] A digital system is a set 
of positive and reliable techniques (methods, devices) for producing and reidentifying 
tokens, or configurations of tokens, from some prespecified set of types. […] Digital 
techniques are write/read techniques. ‘Writing’ a token means producing one of a 
given specified type (possibly complex); ‘reading’ a token means determining what 
type it is. A ‘write/ read cycle’ is writing a token and then (at some later time) reading 
it; a write/read cycle is successful if the type determined by the read technique is the 
same as the type specified to the write technique.

(Haugeland 1985: 48, 53–4)

This is a useful general description of how all the unobservable symbolic homologies 
are designed to make what we do observe in our interface representations possible as 
components of a semiotic system.

Programming languages, code, running software and interfaces

The design history of programming languages and all that we call code is a fascinating 
story of applied semiotics.25 At the beginnings of electronic computer system design 
and code for operations, John von Neumann (designer of the main homologous system 
architecture that we still use today) understood what Leibniz called ‘mechanical thread’, 
and he described the challenge of designing a code system for automated reasoning that 
mapped onto the state of components in the 1940s–50s:

Our problem [for the coding of operations] is, then, to find simple, step-by-step 
methods […]. Since coding is not a static process of translation, but rather the 
technique of providing a dynamic background to control the automatic evolution of a 
meaning, it has to be viewed as a logical problem and one that represents a new branch 
of formal logics.

(Goldstine and Von Neumann 1963: 83)

Peirce would have fully agreed. Of course, we now have a full suite of ‘high level 
programming languages’ (e.g. the C family, Java, Python, JavaScript), for which teams 
of programmers work at high levels of abstraction above the physical systems. But even 
though the system homologies can be forgotten because they are built in and standardized 
(‘the logical equivalence of hardware and software’), coding a program ‘to control the 
automatic evolution of a meaning’ directed by semiotic agents continues to be the prime 
directive of coding software for computational telic systems.
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Programming today begins by composing a ‘human readable’ file termed the ‘source 
code’, consisting of a metalanguage of formally specified terms, phrases and symbols for 
operations, relations and interpretations defined in the programming language. For the 
intentions encoded in the ‘source code’ file to ‘run’ in an actual computer system, the file 
must be translated into binary representations that can be directly installed (mapped into) 
computer memory and the structures of processors.26 The diagram in Table 9.6 provides 
a map of the interpretive processes that enables the ‘source code’, written in a high-level 
programming language, to be mapped to the digital computer system and become part of 
an active system with ‘users’ (semiotic agents). (The table assumes the interactive software 
paradigm.) Each step from source code to running code requires a delegated interpretant 
system, ‘meta-software’ designed to translate one encoded state into another. Of course, 
what we code in the symbols, logic and algorithms in a ‘source code’ program file is as 
equally motivated and directed by cumulative human agency as the active software that 
we ‘run’ and interact with for all our symbolic systems encoded as types of digital media.

Interfaces as dialogic semiotic substrates, and computers as a metamedium

Material interfaces for enabling the symbolic pattern recognition (token → type relations) 
and dialogic interpretation processes with symbol representations have a deep cultural 
history, and digital interface design began by simulating our common two-dimensional 
representational substrates (surfaces for written symbols and images). Because all human 
sign systems must have physical-perceptible structures, symbolic structures come with 
built-in interfaces that enable inferences to systems of meanings outside physical instances. 
Contemporary pixel-based screens are controlled by graphics processors designed for 
rendering physical token structures (representations) of all our 2D symbol systems, and, 
by using projective geometry, for rendering simulations of 3D structures.

The designers of our interactive graphical interfaces were both applied semioticians 
and systems engineers. The interface design concept that began in Doug Engelbart’s lab 

TABLE 9.6  Programming and software: Source code to dialogic interaction.

Source Code Interpretant 
system

Binary ‘machine 
code’ file (or 
interpreted code 
at ‘run time’)

Interpretant 
system

‘Running code’ 
activated and 
directed by 
semiotic agents

⇒ ⇒ ⇒ ⇒

Program text 
file (in Unicode 
bytecode 
representations) 
written in 
a high-level 
programming 
language (C++, 
Python, Java, 
etc.).

Complier 
program or 
interpreter 
translates source 
code text into 
binary ‘machine 
level’ code.

A binary code 
program file, 
as copied to a 
storage device, 
is assignable to a 
physical system 
as executable 
(‘runnable’) 
code.

Operating 
system ‘writes’ a 
tokenized ‘copy’ 
of the program 
into RAM, and 
CPUs initiate 
instructions for 
processes for 
specified data 
types.

‘Users’ are 
semiotic agents, 
dialogically 
interacting with 
the software for 
the symbolic 
systems 
interpreted and 
represented in 
the software, in 
a semiosic cycle.

9781350139329_txt_rev.indd   223 08-07-2022   17:05:37



224	 BLOOMSBURY SEMIOTICS: VOLUME 2

and continued through all versions of windowing interfaces in PCs, distinguished three 
levels of ‘interfaces’: the physical, the cognitive and the conceptual (Card and Moran 
1988; Moggridge 2007). To embody the interface concepts in the software behind what 
we see rendered in screens, graphical interfaces are designed with a ‘meta’ layer that we 
now take for granted in computer devices as two-way dialogic systems. The ‘interface’, 
as a semiotic substrate, is not simply a passive display for static representations, but 
incorporates an input system layer for communicating semiotic agency (intentions, 
choices, directions) back into the system for ongoing dialogic interaction with dynamic 
configurations of representations projected into the physical substrates of the screen.

Our current interface designs support the ‘interactive computing paradigm’, which was 
developed by using implicit semiotic principles for designing non-terminating programs 
for multi-symbolic systems and recursive dialogic interpretive processes.27 Further, as 
Licklider and Kay envisioned, a digital multimedia interactive computer system is not 
correctly conceived as a medium, but as a metamedium, a medium for representing, 
interpreting, communicating and creating new instances of all symbolic media. Our 
contemporary computing paradigm is thus an implementation of Peirce’s dialogic model 
for dynamic symbolic systems, which includes different kinds of semiotic agency in the 
new combined system of human cognizers and distributed agency in many layers of 
software and networked systems.

CONCLUSIONS
There can’t be a ‘semiotic approach’ to the study of computer systems, software, digital 
media, interfaces or the internet because these technologies are constitutively and 
structurally semiotic. That is, digital computing and information technologies are (1) 
complex-system artefacts designed by means of the cognitive-symbolic capacities of human 
sign-using communities, and (2) the whole architecture of subsystems and supporting 
technologies follows telic design principles for serving human symbolic systems and their 
corresponding patterns and actions of interpretation. Computer system design principles 
provide homological maps for symbolic to physical correspondences that enact assigned 
representations and operations. Any computer system, large, small or unobservable, 
represents an implementable design of applied semiotic structures in a unified architecture 
based on, and in the service of, human symbolic thought.

From a pragmatist semiotic perspective, the computer system is not just the complex 
physical system of hardware, software and data (the hidden artefactual structures in 
machines, networks and stored information), even when correctly described as semiotic 
artefacts. The ‘computer system’ is actually the whole dialogic supersystem comprised 
of semiotic agents (aka ‘users’), who are not independent individuals but members of 
meaning-making communities, and computer systems embodying semiotic system design 
for dialogic interaction. As Engelbart originally envisioned, human cognizers + dynamic 
computational semiotic systems form a whole new third system not reducible to a sum 
of the constituents. We are members and agents of the designed systems, presupposed 
and included in the designs, not detached, empirical observers of a ‘machine’ (Winograd 
and Flores 1987; Winograd 1997). We activate the built-in agency position in all the 
interactive-dialogic relations with the physical architectures, in the ‘code’ of any running 
software, in the affordances of interfaces, and in all accessed networked information, 
near or far.
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There are many other levels and contexts of semiotic functions in the design and use 
of software, databases, digital media, interfaces and AI, and these applications will open 
up for semiotic description by extending the semiotic systems deblackboxing method 
outlined here. Further, by extending Peirce’s semeiotic for our contemporary context, 
we have an open opportunity for bridge-building across disciplines, for embracing all 
knowledge domains relevant for semiotic research, and for reclaiming the foundational 
history of ideas woven with Leibniz’s ‘mechanical thread’.

NOTES
1	 Leibniz’s philosophy of symbols and the metaphor of the ‘mechanical thread’ are in Leibniz 

1975 (Loemker, ed.) and Dascal 1987. For the texts on Leibniz’s mechanical calculator, 
the binary (‘dyadic’) number system and his binary calculator, see Leibniz [1679] 2010 and 
[1710] 2009.

2	 For background on the intellectual history and theory from different disciplinary viewpoints, 
see: Gorn 1968; Skagestad 1996; Andersen et al. 1997; Frank 2003; Gudwin and Queiroz 
2005; Nadin 2007; Tedre 2014; Meunier 2018.

3	 On ‘deblackboxing’, see Latour 1999: 183–93, and 2002; on closed, locked-in computing 
devices, see Zittrain 2009.

4	 On mapping principles in diagrammatic reasoning and applications in computer systems, see 
Sowa 1984: 367–402; Glasgow, et al., eds. 1995; Goguen 1999; Sowa 2000a; Goguen and 
Harrell 2005; Stjernfelt 2007; Denning and Martell 2015: 123–35.

5	 For background on the implicit and explicit semiotic foundations in the design history of 
computing, which includes earlier logic machines, diagrams, ‘paper machines’, and pre-
digital methods for automating reasoning, see Gardner 1958; Webb 1980; Krämer 1988; 
Aspray 1990; Marciszewski and Murawski 1995; Priestley 2011; von Plato 2017, and for the 
intellectual history of computers as symbolic systems, see Mahoney 2011.

6	 For example: Engelbart 1963; Winograd and Flores 1987; Card and Moran 1988, and other 
papers in Goldberg (ed) 1988; Rheingold 2000; Murray 2012; Manovich 2013; Rocchi 
2013; Dasgupta 2014; Tedre 2014.

7	 The following studies from various schools of thought on cognition, computation, and the 
computational theory of mind, include both implicit and explicit semiotic theory: Haugeland 
1981a; Pylyshyn 1984; Schank and Childers 1984; Winograd and Flores 1987; Horst 1996; 
Agre 1997; Cummins and Cummins 2000; Scheutz 2002; Nilsson 2007; Clark 2008; Dror 
and Harnad 2008; Nilsson 2009; Rapaport 2012; Rescorla 2020.

8	 Peirce’s explicit definitions for his later program of Logic [considered] as Semeiotic begin in 
1896 (MSS 900, 900(s), Logic of Mathematics) and 1897 (MSS 738 and 798, On logic and 
semeiotic), and he develops the theory continuously from 1901–2 (in his drafts of the Minute 
Logic project, especially MS 425, which treats ‘reasoning by machinery’) to his final papers 
in 1913, a year before his death. On the first page of notebook pages from 1903, Peirce 
wrote the title, Mathematics as It Is to Be Treated in My Logic Treated as Semeiotics (MS 66). 
For general background, see Fisch 1986: 338–42, Colapietro 2003, Pietarinen 2006, and 
Bellucci 2014. I treat Peirce’s Logic as Semeiotic in relation to computing, information, AI 
and symbolic thought in a forthcoming book.

9	 In my comprehensive survey of Peirce’s writings from 1890 to 1914 (in thousands of pages of 
his unpublished papers, and in his published articles and recent editions), I found that Peirce 
uses the term Logic as Semeiotic (and equivalent phrases) over fifty times. During this period, 
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Peirce’s preferred spelling is semeiotic, sometimes semiotic, and very rarely in the plural 
form, semeiotics/semiotics (among over ninety uses of the terms). Peirce intended semeiotic 
to preserve the meanings in the traditions of logic (Greek: semeiotike), represented by the 
term used in works by John Locke and German logicians; but Peirce generalized semeiotic for 
formalizing the structures of all sign systems, especially the necessary structures of reasoning 
in mathematics and logic.

10	 See: Hintikka 1996; Anellis 2015; Øhrstrom 2017; and essays in Houser et al. 1997.
11	 The standard descriptions of computer system architecture and design principles are treated 

in all textbooks on the subject; the following provide accessible orientations: Heuring and 
Jordan 2003; Saltzer and Kaashoek 2009; and especially Tedre 2014 and Denning and 
Martell 2015. For thorough technical descriptions, see Blaauw and Brooks 1997; Comer 
2017; Hennessy and Patterson 2017; Patt and Patel 2020. Valuable for systems theory 
concepts are Winograd and Flores 1987; Simon 1996; and Arthur 2011.

12	 For an orientation to the principle of levels of abstraction, subsystems, and system design see: 
Simon 1996; Baldwin and Clark 2000; Floridi 2008; Gobbo and Benini 2014; Denning and 
Martell 2015: 198–212; Rescorla 2017.

13	 Important studies that discuss or assume the cognitive artefact concept for computing, in 
different disciplinary contexts, are: Gorn 1968; Norman 1991; Hutchins 1999; Mahoney 
2005; Houkes and Vermaas 2010; Nadin 2011; Borgo et al. 2014; Kockelman 2017b; 
Turner 2018; Anderson 2019; Sørensen et al. 2020.

14	 Important sources are Clark and Chalmers 1998; Latour 1999: 176–98; Hollan et al. 2000; 
Dascal and Dror 2005; Zhang and Patel 2006; Dror 2007; Clark 2008; Dror and Harnad 
2008; Enfield and Kockelman 2017; Kockelman 2017a.

15	 The story of Peirce’s unrecognized contributions to, and anticipations of, the foundations 
of modern computing has yet to be told; for intellectual historical facts, connections, and 
insights, see Ketner and Stewart 1984; Ketner 1988; Gandy 1995; Skagestad 1996; Nöth 
1997, 2003; Nadin 2011, 2017.

16	 Researchers will find the selections of papers in EP2, NEM (ed. Eisele 1985), and SWS (ed. 
Bellucci 2020) to be good starting points, but the most important writings from 1906 to 
1912 that apply to computation, symbolic operations, and logical machines have not been 
published. I provide a catalogue of these papers, and edited selections of the most important 
sources, on my website: https://irvine.georgetown.domains/Peirce/.

17	 The sources for these concepts in Peirce’s papers are documented on my website: https://
irvine.georgetown.domains/Peirce/.

18	 The important developments in computing referenced here are documented in Ceruzzi 1983, 
2003; Rheingold 2000; Ifrah 2001; Mahoney 2011; Davis 2012; and Campbell-Kelly and 
Aspray 2014. For the key concepts in interface and interaction design for our GUI systems 
from the 1960s on, see Goldberg (ed) 1988; and Moggridge 2007.

19	 Leibniz 1679, 1710; 1975 (Loemker, ed); Dascal 1987.
20	 Licklider 1960, 1965, 1977; Licklider and Clark 1962; Licklider and Taylor 1968; and see: 

Waldrop 2001.
21	 Accessible and ‘semiotics aware’ introductions to computing and computer systems are 

Tedre 2014; Denning and Martell 2015. Additional useful guides for the key concepts 
in computation are Hilton 1963; Smith 1998, 2002; Mahoney 2011; Davis 2012. More 
advanced accounts of the history of logic and automated reasoning, which reveal implicit 
semiotic principles, are Marciszewski and Murawski 1995; Rojas and Hashagen 2000; 
Priestley 2011; von Plato 2017.
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22	 See the papers from the ACM Ubiquity Symposium on ‘What Is Computation?’ (2011), 
available online: https://ubiquity.acm.org/symposia2011.cfm. The papers were also published 
in The Computer Journal 55 (7) (2012). This approach is also followed by Tedre (2014) and 
Denning and Martell (2015), and assumed throughout in Rheingold (2000).

23	 To avoid confusion in terminology, we need to differentiate homology from analogy (any kind 
of likeness or comparison) and from the related terms isomorphism and hom(e)omorphism, 
used for strictly defined abstract, mathematical equivalences (as in category theory and 
topology) (Krömer 2007; Marquis 2009). The term homology is also used in other sciences, 
and you may find the terms from abstract mathematics used in the computing literature for 
mappings in digital architecture. But homology, in the general sense defined by Peirce, is the 
most appropriate term for the one-to-one, formal-to-physical imposed correspondences in 
digital computer system design.

24	 ‘Information Theory’, as defined in electrical engineering and digital design, is continually 
misunderstood and mystified. For sources and useful explanations, see Shannon and Weaver 
1949; Pierce 1980; Frank 2003; Gleick 2011; Nadin 2011; Denning and Martell 2015: 
35–58; the implicit and explicit semiotic foundations of digital information are also discussed 
in MacKay 1969 and essays in Machlup and Mansfield (eds) 1983.

25	 Accessible introductions are Turbak and Gifford 2008; Martin 2010; Denning and Martell 
2015: 83–121.

26	 The binary code translator programs are called ‘compilers’ and ‘interpreters’.
27	 Important sources for supporting a semiotic view of interactive systems are Engelbart 1963; 

Hutchins et al. 1985; Agre and Rosenschein 1996; Wegner 1997; De Souza 2005; Goldin et 
al. 2006; Moggridge 2007; Murray 2012.
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