
BLOOMSBURY SEMIOTICS

VOLUME 2

9781350139329_txt_rev.indd 1 08-07-2022 17:04:57

Bloomsbury Semiotics
General Editor: Jamin Pelkey

Volume 1: History and Semiosis
Edited by Jamin Pelkey

Volume 2: Semiotics in the Natural and Technical Sciences
Edited by Jamin Pelkey and Stéphanie Walsh Matthews

Volume 3: Semiotics in the Arts and Social Sciences
Edited by Jamin Pelkey, Susan Petrilli and Sophia Melanson Ricciardone

Volume 4: Semiotic Movements
Edited by Jamin Pelkey and Paul Cobley

9781350139329_txt_rev.indd 2 08-07-2022 17:04:57

BLOOMSBURY SEMIOTICS

SEMIOTICS
IN THE

NATURAL AND
TECHNICAL

SCIENCES
VOLUME 2

Edited by Jamin Pelkey and Stéphanie Walsh Matthews

9781350139329_txt_rev.indd 3 08-07-2022 17:04:58

BLOOMSBURY ACADEMIC
Bloomsbury Publishing Plc

50 Bedford Square, London, WC1B 3DP, UK
1385 Broadway, New York, NY 10018, USA

29 Earlsfort Terrace, Dublin 2, Ireland

BLOOMSBURY, BLOOMSBURY ACADEMIC and the Diana logo are trademarks
of Bloomsbury Publishing Plc

First published in Great Britain 2023

Copyright © Bloomsbury Publishing Plc, 2023

Jamin Pelkey and Stéphanie Walsh Matthews have asserted their right under the Copyright,
Designs and Patents Act, 1988, to be identified as Editors of this work.

For legal purposes the Acknowledgements on p. xvi constitute an extension of this copyright page.

Cover design: Tjaša Krivec
Cover illustration by Rebecca Heselton

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording, or any

information storage or retrieval system, without prior permission in writing from the publishers.

Bloomsbury Publishing Plc does not have any control over, or responsibility for, any third-party
websites referred to or in this book. All internet addresses given in this book were correct at the

time of going to press. The author and publisher regret any inconvenience caused if addresses have
changed or sites have ceased to exist, but can accept no responsibility for any such changes.

A catalogue record for this book is available from the British Library.

A catalog record for this book is available from the Library of Congress.

	 ISBN:	 HB:	 978-1-3501-3932-9
		 ePDF:	 978-1-3501-3934-3
		 eBook:	 978-1-3501-3933-6
		 Set:	 978-1-3501-3944-2

Series: Bloomsbury Semiotics

Typeset by Integra Software Services Pvt. Ltd.
Printed and bound in Great Britain

To find out more about our authors and books visit www.bloomsbury.com
and sign up for our newsletters.

9781350139329_txt_rev.indd 4 08-07-2022 17:04:58

CONTENTS

List of Figures� vii

List of Tables� ix

List of Contributors� x

Acknowledgements� xvi

List of Abbreviations� xvii

Introduction� 1
Stéphanie Walsh Matthews

1	 Semiotics in Mathematics and Logic� 13
Ahti-Veikko Pietarinen and Frederik Stjernfelt

2	 Semiotics in General Biology � 35
Kalevi Kull and Don Favareau

3	 Semiotics in Ecology and Environmental Studies � 57
Timo Maran

4	 Semiotics in Ethology and Zoology � 75
Morten Tønnessen

5	 Semiotics in Evolutionary Linguistics� 93
Jamin Pelkey and Prisca Augustyn

6	 Semiotics in Health and Medicine � 119
John Tredinnick-Rowe and Donald E. Stanley

7	 Semiotics in Psychiatry and Psychology � 143
Norbert Andersch

8	 Semiotics in Neuroscience and Cognition � 173
Kristian Tylén and Jijo Kandamkulathy

9	 Semiotics in Computing and Information Systems � 203
Martin Irvine

10	 Semiotics in Economics and Finance� 239
Todd Oakley

9781350139329_txt_rev.indd 5 08-07-2022 17:04:58

INTRODUCTION: DEBLACKBOXING COMPUTER
SYSTEMS AS SEMIOTIC SYSTEMS

Computing and semiotics have been inextricably connected since the late seventeenth
century. The intellectual history of computation is not a story about machines, but about
discoveries in the structures of symbolic thought, specifically how the patterns of necessary
reasoning in logic and mathematics can be formally symbolized at different levels of
abstraction, and then physically ‘operationalized’ by assigning symbolic structures to
physical structures. As leading historians of computing explain,

The modern computer was not the inevitable outcome of technological advance. The
crucial prerequisite for the useful application of technology to computing was the
development of notation, or language systems, sufficiently comprehensive to satisfy
both the need for representation, and the need to express and implement mechanisms
for the transformation of expressions in the language. […] The real intellectual origin
of the modern computer has much deeper roots in the themes of representation and of
automatic methods of symbolic transformation.

(Campbell-Kelly and Russ 1994: 701, 703)

These special ‘language systems’ for ‘automatic methods of symbolic transformation’
(what we know as computer code + data) extend back to what Leibniz called a ‘mechanical
thread’ (thinking with symbols that represent necessary patterns in logic and mathematics).
We can trace this ‘thread’ from the era of Leibniz’s philosophy of symbols, his model for
an arithmetical calculator, and a method for calculating with the binary (base 2) number
system, including his design for the first binary calculator (c. 1700),1 through the era of
Charles Babbage, George Boole and C. S. Peirce (1830s–1910s) (origins of formal logic
and mechanical calculating ‘engines’) (Gabbay and Woods 2004), and on to the era of
modern mathematical logic, the foundations of the modern electronic computing era,
and digital information (1930s–50s) (Gabbay et al. 2014). Leibniz’s ‘thread’ appears in
all physical devices designed to implement symbolic processes by assigning and delegating
their representations and operations (mapped out in special symbols) to intentionally
designed, corresponding components (Hilton 1963; Davis 2012; von Plato 2017).

Semiotics in Computing and
Information Systems

MARTIN IRVINE

CHAPTER NINE

9781350139329_txt_rev.indd 203 08-07-2022 17:05:36

204	 BLOOMSBURY SEMIOTICS: VOLUME 2

The words compute and calculate were synonymous until recently. Both are derived
from Latin words that refer to methods for counting with number symbols and doing
arithmetic, and the term computer originally meant a person who did calculations with
numbers and other formal symbols (Grier 2005). In fact, all designs for physical ‘computer
systems’ (both earlier and modern) are extrapolations from how human computers in
the nineteenth and early twentieth centuries worked out calculations with numbers,
notation systems, formulas, calculating devices and reference books with ‘look-up’
tables of logarithms, trigonometry formulas and other pre-calculated values, to perform
‘computations’. Human computers are the models for the first CPUs (Central Processing
Units) in digital computers: a coordinating agency for interpreting data representations
as ‘inputs’, applying step-by-step, rule-governed operations (logic ‘outsourced’ to logic
circuits), then ‘outputting’ (writing out) results in further sets of symbols, and repeating
the process as needed. C. S. Peirce was an expert in these methods, and both his scientific
work as a ‘computer’ and his theoretical work in mathematics and logic became the
foundation for his semeiotic.

The modern digital electronic computing era has all this history ‘built in’, and our
‘computers’ became technically possible with the unanticipated convergence of research
and development in mathematics, logic, telecommunications and electrical engineering in
the 1930s–40s (Ceruzzi 1983, 2003; Campbell-Kelly and Aspray 2014). This convergence
was directly motivated by a core semiotic problem, one that weaves Leibniz’s ‘thread’
through many layers of complex design solutions: granted that we want to use electrical
signals and components for speed and scalability in computation, how can we structure
electricity and physical components to represent tokens of symbols to be computed, and
then assign operations (necessary interpretations) that ‘go with’ the symbol tokens, and
direct the system to transform the tokens as first represented (‘inputs’) into new tokens
that represent the values or meanings as ‘computed results’ (‘outputs’), in a controlled,
automatic process? The design solution for this semiotic problem is the story of modern
computing, right down to all the devices, networks and media we use today. As Licklider
explained:

Digital computers deal essentially with discrete patterns that may represent names or
pictures quite as readily as numbers, and […] numerical calculation is merely one of
many things that processors of discrete patterns can do. For our purposes, it is beside
the point that the main early applications of digital computers were numerical. It is
more significant that textbooks now call them ‘general symbol processors’.

(Licklider 1968: 274)

How we get from the earlier room-size ‘number crunching’ electronic computers of
the 1950s–60s to our contemporary computer systems for ‘general symbol processing’ is
a story of applied semiotics:

[T]he domain of computation actually comprises symbols – by which I mean things
that represent other things (for example, a string of alphabetic characters) […] The act
of computation is, then, symbol processing: the manipulation and transformation of
symbols. Numbers are just one kind of symbol; calculating is just one kind of symbol
processing. And so, the focus of automatic computation, Babbage’s original dream, is
whether or how this human mental activity of symbol processing can be performed by

9781350139329_txt_rev.indd 204 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 205

(outsourced to) machines with minimal human intervention. Computer science as the
science of automatic computation is also the science of automatic symbol processing.

(Dasgupta 2014: 12)

We will unpack the assumptions about ‘symbol processing’ here, and complete this brief
description to explain how computing now includes all digitally representable human
symbol systems by filling in the details with C. S. Peirce’s semeiotic.

Since the 1960s, and more extensively since the 1990s, modern semiotics and computing
theory intersect across a wide interdisciplinary field that includes research programs in
computer science, systems theory and engineering, design theory, philosophy, cognitive
science, linguistics, logic and mathematics, as well as interdisciplinary work in the field
of semiotic studies.2 In this context, an important viewpoint is emerging: everything in
computing and information systems is based on underlying design principles for semiotic
systems, which include structures for interactions and communications between and
among semiotic agents (human and delegated agents in software). This chapter provides
an orientation to this exciting and expanding field of study.

The best way to make ‘computing and semiotics’ accessible for students and non-
specialists is through a unifying framework that reveals how semiotic functions are
correlated with the design principles for computing systems, digital media, programming
and software, and user interfaces. But because all the relevant disciplines are constituted
by multiple schools of thought with varying terminology, we need a framework
with a generally consistent vocabulary for making useful syntheses of concepts and
semiotic principles regardless of the specialized terminology of any subdiscipline. A
unifying semiotic framework can be provided by combining three interrelated views of
computing that enable us to focus on universal design principles for computer systems as
semiotic systems:

1.	 A Peircean semiotic systems view: extending and applying the key concepts in
Peirce’s program of ‘Logic as Semeiotic’ (c. 1902–12) for the computing systems
that his work anticipated.

2.	 The systems and design view: combining Peirce’s program for semeiotic with
modern systems and design theory, as understood in all computing and information
fields.

3.	 The cognitive-semiotic artefact view: defining the implemented designs in actual
computer systems not as non-human ‘machines’ but as designed cognitive-semiotic
artefacts, a view developed in cognitive science, anthropology and HCI (Human-
Computer Interface Design).

This combined framework provides a ‘deblackboxing’ method for discovering why
and how computing systems are intentionally designed semiotic systems, even though
semiotic principles are hidden from view (‘blackboxed’) in the implemented designs of
computer systems as products. The conceptual metaphor ‘black box’ was originally an
engineering term for any component designed to take in certain kinds of inputs (energy,
signals, information, etc.) and convert them into specified outputs (e.g. a radio, a voltage
transformer, a codec for converting digital into analog audio/video): the details inside
the components can just stay ‘hidden’ (‘black-boxed’, ‘don’t need to know’, ‘built-in’),
because only the outputs matter for the design purpose. The concept is now universally

9781350139329_txt_rev.indd 205 08-07-2022 17:05:36

206	 BLOOMSBURY SEMIOTICS: VOLUME 2

used in systems and software design: ‘blackboxing’ is used to hide the internal complexities
of a module (at one functional level) that other modules in a system ‘don’t need to know
about’ for using the outputs communicated to the system (see below on systems and design
theory). But in our contemporary political economy for intellectual-property-protected
products, this design principle is also used intentionally to close off access to computing
systems in ‘black-boxed’ manufactured devices, which are intended to maintain ‘users’
as passive consumers blocked from understanding the universal semiotic principles on
which the devices depend. A semiotic systems de-blackboxing method, then, is required
for exposing the implemented design principles that are everywhere presupposed and
actively instantiated, but, by historical accident, have been artificially closed off from
users’ understanding.3

The semiotic deblackboxing method introduced here exposes that all our interactions
with computer systems are possible only by means of intentional logical ‘mappings’ between
the levels of symbolic structures (with their interpretation processes) and corresponding
levels in the design of computer systems (see below on homology). Briefly, the principle
of mapping (correspondence relations between systems, domains or contexts) is used at
many conceptual levels in mathematics and logic (e.g. functions, sets, diagrams, category
theory), computer system design, software design and data design (databases, metadata
schemes). Further, intra-system mappings are implemented in the physical structures of
our devices (e.g. pixel coordinates mapped to graphics memory locations). For Peirce,
mapping is a form of diagrammatic thinking in which relations among different levels
of abstraction can be iconically represented, and also materially instantiated in designed
artefacts (e.g. in actual maps and instruments).4

The semiotic foundations of computing systems can be described with both technical
and conceptual accuracy, regardless of how computers and everything digital may be
described in merely instrumental and operational language. I will therefore always use the
term ‘computer system’, rather than ‘computer’, to remind us that we are always talking
about designed semiotic systems, and not reified objects or products.

The semiotic systems view also allows us to make implicit semiotic assumptions
explicit, like mapping out the unconsciously operational grammar of any language. The
intellectual history of mathematics, logic and computer system design is interwoven with
implicit and tacitly presupposed theories of signs, symbols and symbolic processes, and
the framework outlined here allows us to recover these implicit semiotic principles and
make them explicit for our understanding today.5 As Peirce emphasized in many papers
on disclosing the structures of logical inference in algebras and graphs, ‘it is the chief task
of logic gradually to develop that which is implicit in thought and step by step to make
it explicit, or, at least, to show how to do so’ (1897: MS 738.1). Peirce’s whole program
of semeiotic is an application of this logical method, and we will follow a Peircean ‘step
by step’ method that allows to make the implicit explicit by turning things inside-out,
exposing how and why computer systems are designed semiotic systems, whether or not
they are expressly recognized as such.

By using this method, readers will notice that many authors who describe computer
systems, user interface design, digital media and interactive software assume an underlying
‘symbolic systems’ view without presenting an explicit semiotic theory.6 Important
work based on semiotic principles continues at the intersections of cognitive science,
philosophy, theoretical computer science and AI,7 and all of this research and theory can
be embraced and clarified in a unified Peircean semiotic systems view.

9781350139329_txt_rev.indd 206 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 207

FRAMEWORKS FOR A SEMIOTIC SYSTEMS
METHODOLOGY

Peirce’s Logic as Semeiotic and semiotic systems

Other chapters in this reference set provide an overview of Peirce’s semiotic theory (see esp.
Vol. 1, Chps. 4 and 13), but for our context, I will focus on key concepts in Peirce’s works
for describing computer and information systems as semiotic systems.

Our reference model for semiotic theory and computation will be Peirce’s last version
of his research program, termed ‘Logic [Considered] as Semeiotic’, which he did not live
to complete (1890s–1913, and intensively during 1904–12).8 Peirce’s semeiotic, which
must not be confused with post-1960s semiotics, was developed in the context of his
work in mathematics, logic and scientific research (documented in Eisele 1979, 1985,
and papers in NEM).9

Peirce can be considered the first ‘computer scientist’ in that most of his papers during
the Logic as Semeiotic period include extensive drafts of his formal symbolic systems
for representing necessary reasoning, and analyses of the possibilities for automated
reasoning and ‘logical (or reasoning) machines’. He envisioned semeiotic as a logical
unification program for understanding the structure of all sign systems and symbolic
reasoning, which was extensible to the logical-symbolic design principles of algebraic
notation, graphs and diagrams, technical instruments and artefacts, logic machines, and
all devices used for logical analysis and computation.

Peirce also had first-hand knowledge of the technologies and calculating machines of his
era, and he designed his own scientific instruments that provided data for his computations.
His contributions to Boolean logic and methods for formal symbolic notation became part
of the symbolic logic tradition in the 1910s–30s,10 which in turn became the foundation
for the formal symbolic ‘code’ used in the first programming languages, which is now
‘baked in’ to the code libraries used in all contemporary programming languages. Peirce’s
grounding in mathematics, logic, instrument design and the logic machines of his era
make his semeiotic the best extensible model for understanding the semiotic principles in
the design of the computing and media systems that we use every day.

The systems and design view

The key concepts in Peirce’s semeiotic can be readily combined with modern systems
and design theory for developing consistent descriptions of computer and information
systems as designed semiotic systems. This view requires a basic understanding of why
and how digital computer systems are designed the way they are, rather than some other
way.11 System design theory includes the method of levels of abstraction for composing
and decomposing system functions in multiple, hierarchical, interconnected subsystems,
each designed to implement functions at different levels or layers, all of which subserve
the purposes of an overall architecture (the master design) of a larger complex system.12

The method of functional abstraction is essential because it allows us to design a
complex multifunctional system not as a totalized whole, but by distributing functional
levels to corresponding modular subsystems (like processor and memory functions, and
hardware/software modules for graphics and audio/video). Each subsystem is designed to
perform a function and communicate with other subsystems through interfaces (transfer
gateways) in the architecture. Behind what we perceive at the user-facing levels, computer
system design is a way of ‘orchestrating’ multiple unobservable levels of representation

9781350139329_txt_rev.indd 207 08-07-2022 17:05:36

208	 BLOOMSBURY SEMIOTICS: VOLUME 2

within the system, all supporting and returning to what we do observe, interpret and
interact with.

An important pragmatist semiotic principle defined by Peirce underlies the unifying
architecture of computer systems: the multiple levels of subsystems (also termed modules),
from the most basic logic and memory components to software for representing interfaces
for digital media, are designed to be ‘orchestrated’ as a telic (goal-directed, intentional,
purposive) system. A computer system, by definition, must be an implementation of
the purposes of semiotic agents (designers and users) directed into the whole system
architecture. A computer system is made to exist only in service of the symbolic systems it is
designed to instantiate, and the system is given telic direction in the way that metasymbolic
programming code is designed to be interpreted as goal-directed operations in transition
processes throughout the levels of the system (Gorn 1968, 1983; Horst 1996).

Recognizing how and why functional levels of abstraction are universally used in
computer system architecture, digital information and software enables us to establish
semiotic levels of description that directly correspond with design levels of computer
systems. The designed systems view thus provides a key to making all the implicit and
embodied semiotic principles explicit and systematically interpretable.

The cognitive-semiotic artefact view

Our framework reveals that ‘computers’ are not usefully defined as ‘machines’ at all.
Combining concepts from cognitive science, philosophy of computation and anthropology,
we find that computer systems are best defined as designs for cognitive-semiotic artefacts.
An artefact, by definition, includes and presupposes its designers and makers. By making
the principles for digital systems architecture accessible, we can reveal that a computer
system is designed and implemented by and for semiotic agents.13

The cognitive artefact view also allows us to reveal how computer systems, information
and networks exemplify what is now termed, in various fields, extended, distributed,
delegated or off-loaded human cognition and agency.14 Because design principles for
everything computational are telic (purposive), computer system designs exist only for
implementing delegated processes of symbolic cognition, which must always include
shared physical-perceptible representations and a provision for ongoing dialogic
interpretation (which we realize in physical input/output devices, interactive interfaces and
communication across networks). This view also allows us to recognize the deeper history
of contemporary information systems as part of the longer continuum of technologies
designed for representing, storing and transmitting symbolic systems in physical media.

This framework allows us to reveal how computer systems, in designed levels of
subsystems, are structurally and constitutively semiotic, and thus different in kind from
anything else we call machines designed to perform other kinds of functions. Table 9.1
provides a system map for understanding computer systems levels and their corresponding
implementations of semiotic levels.

Key concepts in Peirce’s semeiotic: Sign systems, symbols, technical implementations

Important theoretical developments in Peirce’s papers during his Logic as Semeiotic
period apply directly to the design principles of modern computing systems, and it only
a historical accident that the trajectory of thought developed in Peirce’s writings was
interrupted and then rediscovered, in part, in the 1930s–50s.15 Peirce’s important work

9781350139329_txt_rev.indd 208 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 209

TABLE 9.1  Computer system levels: Overview of the semiotic system stack.

Computer systems
architecture:
Subsystems, component
modules

System functional levels:
Levels of abstraction

Semiotic levels of description

The top ‘user-facing’ level
of multimedia interfaces
mapped to input/output
devices (screens, audio
outputs) in continuous
refresh cycles for projecting
computational results and
states of interaction.

Decoding and transducing
digital data into analogue
(human perceptible)
substrates (screens
and audio outputs), as
projections from software
processes and symbol
system tokenization
mapping design (e.g. pixel
patterns).

Semiotic agents interpret
physical tokens of symbolic
types in interface media, and
direct further interpretations
and representations;
dialogic interactive
interpretation and ongoing
symbolic representations
are physically instantiated
with computer systems as
‘co-agents’.

GUI software/hardware
mappings for interaction,
conducting inputs/outputs to/
from system levels, and for
dynamic updating of display
and audio outputs.

Directing inputs (symbol
token representations
+ intentions) and
outputs (interpreted
representations) in ongoing
recursive process.

Semiotic agents direct the
input/output structures in
the physical subsystems
for enacting dialogic
interpretations, which
project up to next level.

Active software and data
levels.
System modules orchestrate
a ‘running’ software program
by combining the levels of
bytes in program code and
bytes for data encoding (as
indexed in different segments
of active memory), for active
operations on typed tokens.

Encoding symbol structures
for data and operations
(‘symbols that mean’ +
‘symbols that do’) in binary
‘machine interpretable’ byte
representations in which
operations transform tokens
into new tokens in ongoing
directed processes.

‘Source code’ program files
(representing intentions in
the metasymbolic code of a
programming language) are
translated by interpretant
programs (compiler/
interpreter) into binary code
for active processes to be
directed by semiotic agents.

Binary information encoded
and interpreted as both
operations mappable to
processors and as data types
(data encoding for all forms
of digital media) accessible in
memory.

Binary representations
differentiated and defined
for system functions. Data
types as interpretations of
the contents of memory
locations.

Digital (binary) information
as semiotic subsystem
for tokenization and
typed representations.
Tokenization and
retokenization of digital
data from/to storage and
active system memory.

Physical system architecture
modules: processors,
memory units, storage
devices, internal I/O (‘input/
output’), interfaces to upper
level modules. The level of
minimal binary information
structures.

CPUs and GPUs for
logic and programming
instructions, and digital
memory devices for holding
long-term representations
(storage), and short-
term (active RAM) data
representations in physical
locations indexed in the
system.

Physical tokenization of
symbolic structures for both
data and operations. Every
component at the first level
implements a mapping
of symbol structures and
operations, the outputs of
which are communicated
‘up’ the system stack.

9781350139329_txt_rev.indd 209 08-07-2022 17:05:36

210	 BLOOMSBURY SEMIOTICS: VOLUME 2

on these topics has not yet been recovered for current research and theory. Some of the
most important concepts are summarized here.16

Peirce frequently stated that his unified theory would embrace all forms of thought,
reasoning and logic based on systems of ‘external signs’, including technologies designed
to perform symbolic actions and relations (e.g. 1909: MS 637). He emphasized the
constitutive physical-perceptible and cognitive-logical structures of all sign systems, and
the necessity of a semiotic agency which activates triadic relations in ongoing generative
interpretants. ‘[E]very reasoning is of the nature of a sign […] Sign will here be the general
name for everything [used in reasoning], whether it be an instrument of music, a mental
resolve, a voyage of discovery, or anything else that plays an essential part in the spread of
intelligence’ (1907: MS 602.7–8; cf. 1904: MS 774, EP 2.326). Peirce continually refers
to technologies that are based on semiotic and logical principles; for example:

Reason […] only acts through signs, spoken or written or ‘scribed’ or imagined.
That which has made all our wonderful engines, wireless telegraphs, telephones,
phonographs, and a thousand other wonders possible, has been the differential
calculus, by which scientific men are instructed how to make the experiments that will
be important. What is this ‘differential calculus’? It is a system of signs invented by the
great philosopher Leibniz.

(c. 1911: MS 514.46–7)

Peirce had thorough knowledge of the electrical signals technology of his era: he
designed measuring instruments that used electromagnetic switches (as in telegraph
systems), he drew the first diagram for using electrical switches to perform Boolean logic
operations (1886: W5.421–3, and see Gardner 1958; Ketner and Stewart 1984), and he
developed a binary system for encoding and encrypting Morse code (c. 1902: MS 1361).
Peirce clearly understood how binary logic maps onto switched electrical circuits, and
how a binary mathematical code could be used for electrical signals, but these applied
semiotic ideas had to wait for their application in the 1930s, when rediscovered by Claude
Shannon for telecommunication networks and binary data (Shannon 1938; 1948).

Peirce also described how telecommunications signals create a semiotic subsystem that
combines physical sign tokens, physical interpretants and human interpreters:

Every thought, or cognitive representation, is of the nature of a sign. ‘Representation’
and ‘sign’ are synonyms. The whole purpose of a sign is that it shall be interpreted in
another sign; and its whole purport lies in the special character which it imparts to
that interpretation. When a sign determines an interpretation of itself in another sign,
it produces an effect external to itself, a physical effect, though the sign producing
the effect may itself be not an existent object but merely a type. […] Some signs are
interpreted or reproduced by a physical force or something analogous to such a force,
simply by causing an event; as sounds spoken into a telephone effect variations or the
rate of alternation of an electric current along the wire, as a first interpretation, and
these variations again produce new sound-vibrations by reinterpretation [… T]he rate
of alternation of an alternating current along the wire [is] a series of variations making
up a sign that interprets, i.e. translates, the acoustic sign, and in its turn setting up new
acoustic vibrations in the receiver, as a reinterpretation.

(1904: MS 1476.4–5)

9781350139329_txt_rev.indd 210 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 211

This statement is not only a summary of Peirce’s semiotic theory, but a clear example of
how his semeiotic includes any technical design ‘that plays an essential part in the spread
of intelligence’.

We continue to use electrical signals for tokenizing symbolic structures in digital
electronics, for which digital-analogue decoders and transducers ‘translate’ the binary
symbolic sequences to and from human perceptible forms (all audio and visual media).
In fact, Peirce is describing the elements of the electrical signals system that became the
foundation of modern telecommunications and information theory, and the electronic
representations required for digital computing that soon followed. Solving the problem
for physically retokening (reproducing) electrical signals in predictable structures is what
gave us Claude Shannon’s information theory (measuring and quantizing information in
digital bits), and, ultimately, gave us the internet packet design principles that solved the
problem of retokening digital data units across unlimited network connections.

In his many discussions of the potential for automating necessary reasoning in formal
symbol systems, Peirce continually emphasizes that such a system may be possible if it can
be ‘self-controlled’ like human cognitive control over a logical process. Peirce explains
that a symbol, as an intelligible representation given a physical existence in time,

may, in its capacity as such, produce effects in the material universe [… It] can have a
history, may be affected by associations with other signs, and gradually may undergo a
great change of meaning, while preserving a certain self-identity. Indeed […] connected
with suitable machinery or other physical organism, being able to produce external
effects by virtue of its signification, [a symbol] may by one branch of its signification
act upon another branch of its signification; and there we have the first step toward
self-control.

(1905: MS 290.60)

This description is close to our concepts for data representations and the metasymbolic
levels of code interpreted in a computer program. Further, since we can consider ‘that a
man is a machine with automatic controls’ it could be possible to delegate rational self-
control in a design for a mechanical symbolic process: ‘This operation of self-control is a
process in which logical sequence is converted into mechanical sequences […]. There is
a class of signs in which the logical sequence is at the same time a mechanical sequence’
(1905: MS L 390.39).

These references are only a small sample from Peirce’s extensive writings on Logic
as Semeiotic that reveal how the ideas for modern computing systems are based on a
rediscovery of Peircean principles. In fact, as if answering Peirce’s requirement that an
automated logical system must be a ‘self-controlled’, i.e. regulated as a telic (purposively
directed) system, the design principles for modern computer architecture in the 1940s–50s
solved the problem of internal logical control (CPUs), and interactive programming
design since the 1970s solved the problem of semiotic agents controlling and directing
running software as an active, ongoing, dialogic process. Peirce’s inclusive model of
Logic as Semeiotic provides the semiotic structural details for describing modern digital
computer systems as designed semiotic systems.

Table 9.2 presents a brief summary of important terms and concepts in Peirce’s writings
on semeiotic in 1902–12 that apply directly to concepts used in modern computing
systems.17

9781350139329_txt_rev.indd 211 08-07-2022 17:05:36

212	 BLOOMSBURY SEMIOTICS: VOLUME 2

TABLE 9.2  Important concepts in Peirce’s writings on Logic as Semeiotic (1902–12).

Triadic structure
of signs/symbols in
systems of relations

Peirce extends his concepts for triadic symbol structures for theory
on the properties of physical instantiation and sign actions, kinds of
interpretants, the interpretant function as a generative principle, and
semiotic agency.

Type/Token
Relation

From 1906 on, Peirce used the terms token (physical instance) and
type (general abstract pattern) for the correlation of perceptible
representations to intelligible symbolic forms (replacing his earlier
terms). Anything symbolic must be tokenizable and retokenizable as
shared cognitive anchors.

Physical properties
of signs, and how
signs can be used
to cause physical
actions

Peirce describes how all signs/symbols require instantiation as
physical-temporal-perceptible and intersubjectively available
representations. Peirce’s concepts (representamen, tokens,
physical indices) can be generalized as the principle for physical
structured substrates, which hold perceptible patterns. Symbols
thus instantiated can be used to cause physical actions in a designed
system.

The dialogic
principle

Peirce extends the model of meaning-development in interpretants
in human dialog to the steps performed in logic as interactive
interpretation with diagrams, notation systems, and technical
devices. Externalized structures (graphs, diagrams, notation systems
for computation) that support dynamic interpretation for reasoning
are termed Quasi-minds.

Symbols and
metasymbols:
Formalizing
necessary reasoning
and potential for
automation

From the 1880s on, Peirce developed concepts for formal symbols
and symbols used at different levels of abstraction, which (in modern
terms) are metasymbols for logical operations, abstractions, syntax
and inference rules, in both algebraic and diagrammatic (graph)
notations. From 1902 on, he describes how assigning the rule-
governed operations of formal symbols to physical structures could
enable automation in a self-controlled system.

Boolean logic and
binary (base 2)
number system

Peirce drew the first diagram for performing Boolean AND OR
operations with electromagnetic switches (1886), and in the
1880s–90s he became the leading American authority on Boolean
symbolic logic. From 1904–12, he wrote hundreds of pages of
mostly unpublished work on Boolean operations, the base 2 number
system, and methods for binary computations.

HISTORIES OF DISCIPLINES

Major contributions to semiotics and computing, Leibniz to multimedia

There is a long intellectual history of semiotic thought before ‘semiotics’ as a post-1960s
academic field (Eschbach and Trabant 1983; vols. 1–2 of Posner et al. 1997–2003), and
this history is interwoven with a parallel history of computation (theory, design and
implementation) before and after contemporary digital computers. Tracing the semiotic
archaeology of computing with the framework presented here is important for our
deblackboxing approach.

9781350139329_txt_rev.indd 212 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 213

TABLE 9.3  Major developments in computing and semiotics: Theory and
implementations, Leibniz to the Internet.

1679–1710 G. W. Leibniz, philosophy of symbols and symbolic operations; designed
calculating machine, and model for a binary (base 2) calculator.19 Leibniz
was a major influence on C. S. Peirce.

1820–50 Charles Babbage develops mechanical Difference Engine and designs for
the Analytical Engine (1820s–40s). Develops symbolic notation system for
symbolic-mechanical homologies.

1832–37: Samuel Morse designs Telegraphic Code as proto-binary
‘system of signs’ mapped to open/closed circuits in electromagnetic
switches. The foundations for all future electronic communications.

1847–54: George Boole, Laws of Thought: the binary (two-value) algebra
of logic.

1860s–1910s C. S. Peirce:

Develops and expands Boolean logic in algebraic and graphical systems
for formal logic; develops a diagrammatic system of logic in ‘Existential
Graphs’ (1880s–1912).

Designs Boolean logic switches for a ‘logical machine’, and publishes
an article on the design of ‘Logic Machines’ (1886–7: W 5.421–6, W
6.65–74).

Develops methods for binary (base 2) computation (1904–12).

Writes many drafts of papers for his unfinished program of ‘Logic as
Semeiotic’ (1890s–1912), which includes semiotic concepts for technical
systems.

1920s–30s Beginnings of ‘Information Theory’ in telecommunications and electrical
engineering: techniques for ‘shaping signals’, controlling electrical current
and radio waves as a semiotic subsystem for transmitting representations.

1930s–40s Alan Turing develops formal method for converting the steps in paper
and pencil ‘computations’ into a discrete sequenced, automatable
metasymbolic rule-governed process (1937).

Claude Shannon rediscovers how to apply Boolean logic to electrical
switches (1938); a design previously developed by Peirce. This design
is developed further in the 1950s for clusters of ‘logic gates’ in all
computing processors (CPUs).

Charles Morris reinterprets Peirce’s semiotics and pragmatism; his
writings become known in engineering and science communities (Morris
1938, 1946, 1964)

Table 9.3 presents a conceptual overview of major developments in this combined
history of theory and technical implementations so that the underlying semiotic systems
design principles can become accessible for further study.18

9781350139329_txt_rev.indd 213 08-07-2022 17:05:36

214	 BLOOMSBURY SEMIOTICS: VOLUME 2

1940s Electrical engineering information theory and computer design theory
converge.

Design principles for electronic computing system architecture first
developed.

1945–48: John Von Neumann’s architecture for processor + memory
units established (Von Neumann 1987).

Claude Shannon establishes the mathematical theory for discretizing
information in electronics based on the binary bit as a substrate for
information representations (1948).

Vannevar Bush, Memex (‘memory expander’): a design concept for
bringing multiple symbol systems from different media into a unified,
user-configurable desk ‘display’ (1945); a conceptual model for Engelbart
and subsequent digital interface designs.

1950s–60s John von Neumann, Arthur Burks, and colleagues standardize computing
architecture for automating logic, and applying the binary system for data
and code.

Transition in computer science and engineering for reconceiving
computer systems as general symbol processors for encoding any symbolic
system, not merely ‘number crunchers’ (Hamming, Licklider, Engelbart,
Newell and Simon).

Donald MacKay, papers on Information Theory and Symbolic Systems
(1952–68) (MacKay 1969).

Colin Cherry, On Human Communication (1957), includes semiotic
principles.

Allen Newell & Herbert Simon develop ‘physical symbol systems’ theory:
(1961, 1972, 1976, 2003); and Newell (1980, 1986); Simon (1993, 1996).

1960s–70s J. C. R. Licklider, Doug Engelbart and Alan Kay redefine computing for
multi-symbolic systems by developing engineering solutions for symbolic
and interactive system concepts (see: Rheingold 2000; Moggridge 2007).

Licklider redefines computers as a metamedium for symbolic systems,
interactions, communication, and knowledge; funds Doug Engelbart’s lab
(1960–77).20

Ivan Sutherland, Sketchpad (1963): proof of concept for graphical
interface systems with a screen input device; display screen reconceived as
two-way interface.

Doug Engelbart, ‘Augmenting Human Intellect’ research program at SRI:
computer systems redesigned as multi-symbol, cognitive, networked,
interactive systems with integrative representational interfaces (Engelbart
1963). Invents ‘mouse’ controller, windowing system and hyperlinking
documents over networked system (1960–8).

Saul Gorn redescribes computer systems with pragmatist semiotics (Gorn
1967, 1968, 1983).

Semiotics Societies established; Semiotics as an academic field of study
formally begins.

9781350139329_txt_rev.indd 214 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 215

1970s 1972–7: Alan Kay, Dynabook concept for computers as a metamedium.
Develops Object-Oriented Programming and symbolic interface systems at
Xerox/PARC (Kay 1972, 1984; Kay and Goldberg 1977).

1977–9: Kay co-develops Xerox PARC, Star/Alto PCs: first graphical
interface, multimedia ‘personal’ computer systems with window layers,
hypertext linking, icons and mouse pointer device. Semiotic terms – type/
token, icon, index – are adopted in GUI design at Xerox/PARC.

ARPAnet – Internet (1970s–80s):

Data packet protocols, implementing metadata layers and extending
information theory for digital tokenization of data across networks of
networks. Internet architecture and TCP/IP embodies all the requirements
of a semiotic subsystem for end-to-end encoding and decoding
(transmission/ reception) of all data types in the client/server architecture
of the Internet.

1970s–90s: Emerging interest in computing systems for semiotic theory
(early studies by Nake, Nadin and Andersen).

1980s 1984: Apple Macintosh: consumer system version of Xerox/PARC
interactive graphical system concepts (without networking).

‘Personal computer’ GUI and interactive software design principles are
established across operating systems, and soon become standardized for
the design of all consumer and business PCs.

Human Computer Interface design (HCI) becomes an interdisciplinary
field (Shneiderman 1983, 1997; Norman and Draper 1986), combining
computer science, design, programming, cognitive psychology, interaction
theories and semiotic theory.

1990s 1991: Tim Berners-Lee develops the HTTP Web server system and
HTML for hypertext linking among multiple networked documents as a
protocol layer that uses the client/server architecture of the Internet.

1991: Unicode founded to standardize digital code for representations of
written characters of all languages.

Digital media standards widely adopted for digitization of all symbolic
types (text, graphics, image, photo, video, audio).

1993–5: Graphical hypermedia interface software for the Web (Mosaic,
Netscape).

1994: Internet and Web opened to private development and consumer use.

Hypertext and hypermedia systems extend semiotic principles for indexical
linking with the Internet client/server architecture as a subsystem.

HCI now includes Internet/Web multimedia design.

2000s– Internet and Web architectures scale and extend for all digital media and
information services.

Internet-connected massively distributed computing systems (Cloud)
become standard architecture.

AI and Machine Learning (ML) methods become viable with advances in
computation and massive data sets.

9781350139329_txt_rev.indd 215 08-07-2022 17:05:36

216	 BLOOMSBURY SEMIOTICS: VOLUME 2

Research and theory on computation and information
in semiotic studies: 1980s–present

There are multiple schools of thought and disciplinary contexts for semiotic theory, and,
thus, for ‘semiotics and computing’. The ongoing topics of research and theory in the
semiotic studies community and related fields since the 1980s are summarized in Table
9.4, which presents representative work for points of entry in the field.

Several scholars have led the way in applying Peircean principles to the study of
computer and information systems: the studies by Frieder Nake (1997, 2002, 2008a,
2008b); Winfried Nöth (1997, 2002); Mihai Nadin (1988b, 1998, 2007, 2011); Peter
Skagestad (1993, 1996, 1999); John Sowa (1984, 1991, 2000a, 2000b) and Joseph

TABLE 9.4  Research and theory on semiotics and computing, 1980s to present.

Theories of computation:
Semiosis and symbolic
systems;
Logic and computation;
Computational theories of
mind

Ketner and Stewart (1984) | Ketner (1988)

Andersen, Holmqvist, Jensen (1993) | Skagestad (1996)

Fetzer (1997, 2001) | Andersen (1997) | Nöth (1997, 2002)

Andersen, Hasle, Brandt (1997) | Gudwin (1999)

Nadin (1998, 2007, 2011) | Ransdell (2003)

Rapaport (1999, 2012, 2018) | Sowa (2000a, 2006)

Gomes, Gudwin, El-Hani, Queiroz (2007)

Queiroz and Merrell (2009) | Tanaka-Ishii (2010)

Semiotic Foundations of
Information Theory

MacKay (1969) | Gorn (1968, 1983) | Nadin (2011)

Kockelman (2017a, b)

Interface Design and
Interaction Programming

Engelbart (1988) | Shneiderman (1982)

Nadin (1988b, 1988a, 2017) | Kay (2001)

Goguen (Goguen 1999; Malcolm and Goguen 1999)

Goguen and Harrell (2005) | De Souza (2005)

Murray (2012)

Digital Media as a Semiotic
System; Software and
Digital Art

Nake (1999, 2002, 2008a, 2009; Nake and Grabowski
2006) | Murray (2012) | Manovich (2013)

Knowledge Representation,
Logic, and Conceptual
Structures

Sowa (1984, 1991, 2000a, 2000b)

Meunier (1989, 1998) | Holmqvist, Klein, Posner (1996)

Semiotic Engineering
Concepts

Liu (2000) | De Souza (2005) | Nadin (2017)

Sowa (2000a, 2011) | Barbosa and Breitman (2017)

AI, Cybernetic Systems, and
Semiotic Models of Data

Fetzer (Fetzer 1988, 1997, 2001)

Skagestad (1993, 1996) | Agre (1995, 1997)

Jorna, Van Heusden, Posner (1993) | Ketner (2003)

9781350139329_txt_rev.indd 216 08-07-2022 17:05:36

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 217

Goguen (Goguen 1999, 2003; Malcolm and Goguen 1999; Goguen and Harrell 2005) are
foundational. Other important studies appeared in the 1990s–2000s (Fetzer 1988, 1997,
2001, 2004; Andersen et al. 1997; Queiroz and Merrell 2009). The interdisciplinary
scope of semiotics and computing now also includes work in anthropology and cognitive
science (see Kockelman 2005, 2006, 2010, 2017a, 2017b).

METHODOLOGIES

Describing semiotic levels in the design of digital computing systems

With the framework outlined above and the knowledge base provided by the related
disciplines, we can apply a semiotic deblackboxing method for describing how and why
computer systems, software and digital media are semiotic systems, designed as systems of
subsystems that serve human symbolic representation, interpretation and communication.
With this method, we will also be able to discover our roles as semiotic agents, when
everything computational and digital is restored to intelligibility as a semiotic system with
purposiveness, agency and interpretability built in by design. Among the fundamental
principles of computing and the necessary design features of digital systems, the following
topics provide useful entry points for making semiotic principles explicit in a Peircean
semiotic systems description.

Computation, automation and computer systems

Our current PCs and computing devices incorporate nearly a hundred years of design
solutions for technical implementations of semiotic systems.21 We can summarize the
semiotic systems view of the design solutions to the core semiotic problem. To create an
electronic computer system for automating operations (interpretive processes) on types of
symbols and produce new token instances representing interpretations, we need to design a
physical system that will allow us to (1) introduce physical tokens of human intentional sign
systems and register them internally in structures in the system (i.e. take in inputs through
an interface), (2) implement logical operations (interpretations) assigned to those symbols as
defined at other levels in the system, (3) direct the system processes to generate (retokenize)
tokens for internal transitions in the operations and further tokens for what the ‘input’
tokens must be transformed into as a result (‘outputs’) of the interpretations, and then (4)
project the ‘output’ tokens into perceptible and interpretable physical media (i.e. interfaces).

Further, having chosen the binary electronic architecture as the most efficient, we can
use the same binary tokenization system to create byte representations of symbolic types
(data), map the representations of human symbol systems (written characters, graphics,
images, sounds) to indexed memory locations and assign to each symbolic type the
pattern of interpretations (operations, relations, concept maps) that ‘go with’ the tokens
instantiated in the system substrates.

Models of computation for digital systems have gone through several stages of
development since the 1940s, each in parallel with developments in supporting
subsystems (e.g. memory units, processors, displays): (1) the first systems were algorithmic
calculating machines designed ‘run’ one terminating program at a time in a system that
encoded ‘symbols that mean’ and ‘symbols that do’ in corresponding binary substrates
(the finite state machine ‘input-output’ model, 1940s–50s), (2) computing expanded as
‘general symbol processing’ designed to map any encodable symbol token structure and
correlated patterns of interpretive ‘processing’ to binary memory units and processor

9781350139329_txt_rev.indd 217 08-07-2022 17:05:36

218	 BLOOMSBURY SEMIOTICS: VOLUME 2

structures, and output corresponding representations to displays (screens) (1960s–70s)
and (3) our current paradigm of interactive programming, dialogic graphical interfaces
and networked, distributed computing in many layers of software, a macro design which
subsumes earlier design stages. In our interactive paradigm, system levels are combined
for dialogic processes, directed by agents who can continually modify, reinterpret and
create new representations (1970s–present).

Many leaders in computer science today focus the definition of computing and
computer science on the implicit semiotic principles of representations, interpretive
transformations and information processing, and not on computers as machines.22
‘Representation-transformation can be a reference model of computing. An information
process is a sequence of representations’ (Denning 2012: 808–89). Further, the core of
computation is not simply representation, but operationalizing symbolic structures so that
they cause controlled actions as operations, that is, as rule-directed interpretations of
representations. Many descriptions of computation today follow the same view of sign-
actions and symbolic processes that Peirce first developed:

Computing emphasizes the transformation of information, not simply its discovery,
classification, storage, and communication. Algorithms not only read information
structures, they modify them […]. [T]he structures of computing are not just
descriptive, they are generative. An algorithm is not just a description of a method for
solving a problem, it causes a machine to solve the problem. The computing sciences
are the only sciences with such a strong emphasis on information causing action.

(Denning and Martell 2105: 16–17)

These are the assumptions that enable computer systems to become semiotic systems.
Assumed human cognitive-semiotic agency is ‘built in’ to all system levels (by assignment
or delegation), and is structurally anticipated in the design principles for interactive and
networked systems.

The principle of Homology: The key to the physical symbolic system

There is a logical-semiotic ‘key’ for understanding why and how digital electronic
computing systems can be designed to both instantiate physical symbolic representations
(tokens of symbol types) and implement logical operations (perform assignable
interpretations and instantiate further tokens) in a unified binary architecture. The key
is in how the mathematical principle of homology (structural correspondence mapping
between domains) can be used as a design principle; that is, by imposing a logical map of
one-to-one correspondences between structures in symbolic systems and structures in an
intentionally designed physical system.

Peirce defined the homological mapping principle in his writings on mathematics
and cartography (map-making): a homology (from Greek: homo: like, same + logos:
structure, form, ratio, meaning) describes correspondences representing equivalences
in structure or form. ‘Homological, having a structural affinity: distinguished from
analogical’ (1889–91: CD 2868). The principle of one-to-one correspondence distinguishes
homology from simple analogy: ‘homologous is corresponding in a system of one-to-
one correspondence’ (1894–5: MS 165, NEM 2.217). ‘A correspondence is a system of
relationship between two sets of objects which connects all the objects of the first set
each with the same number of objects of the second set’, a definition also equivalent to
an injective function in mathematics. Homology is closely parallel with the concept of

9781350139329_txt_rev.indd 218 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 219

projection in geometry and map-making: ‘[a projection] is a system by which the points
on the surface of the earth […] are made to correspond one to one to the points of a map’
(1894–5: MS 94, NEM 2.286). Homologies and mapping projections are applications
of the larger concept of mathematical functions: ‘The theory of projections [… may]
be said to be simply the theory of functions viewed under the strong perspective of a
practical standpoint’ (1889–91: CD 4763).

Digital computer systems as automated symbol processing systems would be impossible
without this deeply assumed ‘practical standpoint’ for logical-symbolic mappings. A
homology, used as a design principle, is a system of relations for mapping (or projecting)
the structures of symbols and logic (represented in formal notation, graphs and diagrams)
to intentionally corresponding physical structures, mapping one system onto or into
another system (see Goguen 1999; Ambrosio 2014).23

Computer system architecture design provides the master plan for the homological
mappings for each hardware and software subsystem so that the physical structures
communicate back and forth, up and down, from and to, our input/output interfaces
for interpretable token representations and communicating further semiotic agency
into the system. This combination of internal and external physical substrates solves
the core semiotic problem: how to ‘realize’ or ‘instantiate’ computations and symbolic
representations in the physical affordances of the component structures (memory,
processor units, user interfaces), electrical energy and time (Nisan and Schocken 2005;
Denning and Martell 2015; Comer 2017; Rescorla 2017; see Table 9.5).

TABLE 9.5  Computer system homologies.

Symbolic structures Mapped to Physical structures

Data: ‘Symbols that mean’
Structures of our main symbol
systems (e.g. text, image patterns)
tokenized as physical patterns
of bit/byte units with data type
assignments.

⇒ Tokenization of symbols in substrates
in long-term storage devices, and
in substrates for active short-term
representation arrays of binary cells in
RAM memory and in processor units.

Program code: ‘Symbols that do’
Metasymbolic symbols in
programs are coded for
operations and interpretive
processes on/for data tokens.
‘Code’ is also tokenized in digital
bit/byte units in a program file.

⇒ ‘Running code’ is projected from
locations in active memory to processor
units with arrays of binary logic ‘gates’
that perform operations on data tokens
by first ‘reading’ input data tokens, and
‘writing’ (tokenizing) results in memory.

Formal necessity
Programming code is a sign system
for translating necessary relations
in logic and math (represented in
formal symbols and metasymbols)
into binary encoded algorithms
and logic in software that
anticipate interpretation in the
architecture of a computer system
for performing computations as
actions.

⇒ Physical causality
CPUs (and clusters of processors)
translate the binary encoded
representations in programs through
arrays of physical logic gates into causal
actions (interpretive processes) over
physical (tokenized) data representations.
CPU’s must also control and time-
sequence operation cycles for performing
interpretive processes over physical time
and spatial memory locations.

9781350139329_txt_rev.indd 219 08-07-2022 17:05:37

220	 BLOOMSBURY SEMIOTICS: VOLUME 2

But viewed at the software, interface and media representation levels, we only attend to
the higher levels of abstraction (the ‘user-facing’ levels) in the telic design: the observable
levels of outputs and inputs are directly mapped to the lower unobservable physical levels,
which are designed to ‘communicate up’ through the system. This ‘stacking’ of levels
enables designers, programmers and users to take ‘the logical equivalence of hardware
and software’ for granted, as Saul Gorn lucidly explained (Gorn 1968). At our observable
‘user’ levels, physical homologies are designed to disappear into pure functionality.

Mapping principles are used in many contexts in computer system design, but viewed
at a macro, unifying level, the homologous mapping principle is what enables us to create
automated computation by translating formal (symbolic) necessity (represented in code)
into physical causality (in computing components). The recognition of the formal-to-
physical mapping principle, a Leibnizian ‘mechanical thread’, extends back to the formal
symbolic logic systems developed by Peirce and his contemporaries in Boolean algebras
and diagrammatic systems. The symbolic systems for formalizing necessary relations,
developed from Peirce’s era to Turing’s in the 1930s, demonstrated that logical necessity
could, in principle, be automated, provided that we can map the formal structures in a
system of one-to-one correspondences for translating formal necessity into controlled
physical causality (Robinson 1979; Robinson and Voronkov 2001; Rocchi 2013)
(see Table 9.5). The mapping of formal metasymbolic structures (programming code)
to physical architecture structures that perform actions is the sine qua non of digital
electronic computation as a system of active, dynamic, interpretation processes.

Information and binary systems: Designing semiotic subsystems

‘Information theory’, as developed in electrical engineering, is an engineering solution to a
semiotic problem: how can we impose a design on electrical current (and radio waves) for
a system of predictable patterns that are invariant over places, times and material media,
so that we can use the energy patterns to represent intentionally meaningful patterns in a
communicable human sign system? Short answer: we can only efficiently impose this kind
of controllable, predictable pattern on switched states of an electrical circuit: closed/open,
on/off, voltage present/voltage absent. This is a binary, one-of-two-possible-states system,
which maps exactly to the binary (base 2) number system and to the logical values in
Boolean logic (T/F, yes/no). One unit of a switched state is a bit (binary unit); string them
together in ordered patterns and we get bytes, which we can use to encode the structures
of any digitized symbolic system. We implement the binary system map in matrices of
miniature transistors (memory units) and chains of combined logic switches (logic ‘gates’
in processors). Digital information, then, is a design for a semiotic subsystem, a technique
for tokenizing representations of symbolic structures in homologous physical substrates
(mapping symbolic patterns to physical patterns).24

For an automated electronic computational system, then, only binary electronics allows
us to create an exact system of one-to-one correspondences. This correspondence system
allows us to (1) physically tokenize representations in formal-to-physical mappings in
memory cells (bits and byte units: data) and (2) perform operations on representations by
means of combinations of binary logic switches ‘hard-wired’ in millions of ‘logic gates’ in
microprocessors. The combination of (1) and (2) is the definition of digital computation
(see Table 9.5).

Computer system design also includes a method for managing levels and types of
binary bit representations. At digital bit-level representations, both ‘data’ and ‘program

9781350139329_txt_rev.indd 220 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 221

code’ are stored as binary data in memory units, but computer systems are designed to
index and type memory locations so that the tokenized bits and bytes can be referenced
and internally retokenized to function at their assigned symbolic levels. Bits/bytes only
‘mean’ in a system of interpretation represented at another level, thus demonstrating the
essential semiotic structure of all things digital.

Unlike other material substrates in the history of sign systems (spoken language,
traditional writing materials, image supports, analogue media), digital information is
structurally semiotic in that the subsystem requires applying abstract symbolic thought
itself to impose a logical structure on materials and energy that are meaningless in
themselves (Blanchette 2011; Abbott 2019; Patt and Patel 2020). The mapping principle
followed in engineering processes for implementation in electronic components allows us
to instantiate bits and bytes as structure-preserving structures (replicable and transmittable
patterns), creating the predictable, controllable structures required for all data tokenizing
systems, from what we input through our keyboards and mouse clicks to internet packets
sent to initiate a remote Cloud computing data process.

Computers, symbol processing and semiotic architecture

Peirce’s semeiotic, which includes the principles for physical symbolic homologies and
the logic of operations, allows us to complete and reframe the definitions of computers
as ‘symbol systems’. Always aware of the necessity of physical instantiations of signs
as shared cognitive anchors, Peirce also saw how sign systems, in ongoing patterns of
representations and interpretations, can form semiotic ‘strata’ or levels of signs:

In consequence of every sign determining an Interpretant, which is itself a sign, we
have sign overlying sign. The consequence of this, in its turn, is that a sign may, in
its immediate exterior, be of one of the three classes [icon, index, symbol], but may
at once determine a sign of another class. But this in its turn determines a sign whose
character has to be considered. This subject has to be carefully considered, and order
brought into the relations of the strata of signs.

(Minute Logic, MS 425 [1902]:134–5)

This description is an excellent starting point for understanding the sign-system levels in
the physical tokenization of structures of symbolic types and the delegated interpretants
in software, which combine to make a computer system a designed semiotic system. We
need only add Peirce’s extensive treatment of symbolic operations and interpretations to
fill in the model for digital computer systems and the ‘strata’ of signs for digital media
representations managed in the homologous maps for information, processing and
interactive interface representations.

A model for ‘symbol systems’ emerged the 1950s–70s, which became part of the
discourse in computer science and AI. Allen Newell and Herbert Simon developed the
‘physical symbol system’ model, which combined the computational theory of mind
in cognitive science with the concepts of symbols, logic and rule-governed operations
in computer science (Newell and Simon 1976; Haugeland 1981b; Simon 1996). The
‘physical symbol system’ descriptions get us part way to a semiotic model, but the theory
is based on an impoverished conception of signs and symbols, mostly modelled on the
formal symbols of symbolic logic notation, with rules for logical operations and relations,
that can be assigned in the computer architecture. The role of semiotic agency and

9781350139329_txt_rev.indd 221 08-07-2022 17:05:37

222	 BLOOMSBURY SEMIOTICS: VOLUME 2

the function of interpretant relations in a full triadic symbol system model, in Peirce’s
sense, are unaccounted for. However, the assumptions and terminology of the ‘physical
symbol system’ hypothesis continue to inform arguments about symbols in theories of
computation, cognition and AI (Marcus 2001; Nilsson 2007; Steels 2007; Conery 2012;
Rapaport 2012).

We use the binary subsystems for byte patterns of all digitizable symbolic types and
methods for representation; and, at the digital token level, a computer system is designed
as a dynamic system of unlimited retokenization: ‘tokens in’ and new ‘tokens out’ in
the managed ‘strata of signs’. As Haugeland explains, using Peirce’s terms, in his classic
study of AI:

A computer is an interpreted automatic formal system. […] A digital system is a set
of positive and reliable techniques (methods, devices) for producing and reidentifying
tokens, or configurations of tokens, from some prespecified set of types. […] Digital
techniques are write/read techniques. ‘Writing’ a token means producing one of a
given specified type (possibly complex); ‘reading’ a token means determining what
type it is. A ‘write/ read cycle’ is writing a token and then (at some later time) reading
it; a write/read cycle is successful if the type determined by the read technique is the
same as the type specified to the write technique.

(Haugeland 1985: 48, 53–4)

This is a useful general description of how all the unobservable symbolic homologies
are designed to make what we do observe in our interface representations possible as
components of a semiotic system.

Programming languages, code, running software and interfaces

The design history of programming languages and all that we call code is a fascinating
story of applied semiotics.25 At the beginnings of electronic computer system design
and code for operations, John von Neumann (designer of the main homologous system
architecture that we still use today) understood what Leibniz called ‘mechanical thread’,
and he described the challenge of designing a code system for automated reasoning that
mapped onto the state of components in the 1940s–50s:

Our problem [for the coding of operations] is, then, to find simple, step-by-step
methods […]. Since coding is not a static process of translation, but rather the
technique of providing a dynamic background to control the automatic evolution of a
meaning, it has to be viewed as a logical problem and one that represents a new branch
of formal logics.

(Goldstine and Von Neumann 1963: 83)

Peirce would have fully agreed. Of course, we now have a full suite of ‘high level
programming languages’ (e.g. the C family, Java, Python, JavaScript), for which teams
of programmers work at high levels of abstraction above the physical systems. But even
though the system homologies can be forgotten because they are built in and standardized
(‘the logical equivalence of hardware and software’), coding a program ‘to control the
automatic evolution of a meaning’ directed by semiotic agents continues to be the prime
directive of coding software for computational telic systems.

9781350139329_txt_rev.indd 222 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 223

Programming today begins by composing a ‘human readable’ file termed the ‘source
code’, consisting of a metalanguage of formally specified terms, phrases and symbols for
operations, relations and interpretations defined in the programming language. For the
intentions encoded in the ‘source code’ file to ‘run’ in an actual computer system, the file
must be translated into binary representations that can be directly installed (mapped into)
computer memory and the structures of processors.26 The diagram in Table 9.6 provides
a map of the interpretive processes that enables the ‘source code’, written in a high-level
programming language, to be mapped to the digital computer system and become part of
an active system with ‘users’ (semiotic agents). (The table assumes the interactive software
paradigm.) Each step from source code to running code requires a delegated interpretant
system, ‘meta-software’ designed to translate one encoded state into another. Of course,
what we code in the symbols, logic and algorithms in a ‘source code’ program file is as
equally motivated and directed by cumulative human agency as the active software that
we ‘run’ and interact with for all our symbolic systems encoded as types of digital media.

Interfaces as dialogic semiotic substrates, and computers as a metamedium

Material interfaces for enabling the symbolic pattern recognition (token → type relations)
and dialogic interpretation processes with symbol representations have a deep cultural
history, and digital interface design began by simulating our common two-dimensional
representational substrates (surfaces for written symbols and images). Because all human
sign systems must have physical-perceptible structures, symbolic structures come with
built-in interfaces that enable inferences to systems of meanings outside physical instances.
Contemporary pixel-based screens are controlled by graphics processors designed for
rendering physical token structures (representations) of all our 2D symbol systems, and,
by using projective geometry, for rendering simulations of 3D structures.

The designers of our interactive graphical interfaces were both applied semioticians
and systems engineers. The interface design concept that began in Doug Engelbart’s lab

TABLE 9.6  Programming and software: Source code to dialogic interaction.

Source Code Interpretant
system

Binary ‘machine
code’ file (or
interpreted code
at ‘run time’)

Interpretant
system

‘Running code’
activated and
directed by
semiotic agents

⇒ ⇒ ⇒ ⇒

Program text
file (in Unicode
bytecode
representations)
written in
a high-level
programming
language (C++,
Python, Java,
etc.).

Complier
program or
interpreter
translates source
code text into
binary ‘machine
level’ code.

A binary code
program file,
as copied to a
storage device,
is assignable to a
physical system
as executable
(‘runnable’)
code.

Operating
system ‘writes’ a
tokenized ‘copy’
of the program
into RAM, and
CPUs initiate
instructions for
processes for
specified data
types.

‘Users’ are
semiotic agents,
dialogically
interacting with
the software for
the symbolic
systems
interpreted and
represented in
the software, in
a semiosic cycle.

9781350139329_txt_rev.indd 223 08-07-2022 17:05:37

224	 BLOOMSBURY SEMIOTICS: VOLUME 2

and continued through all versions of windowing interfaces in PCs, distinguished three
levels of ‘interfaces’: the physical, the cognitive and the conceptual (Card and Moran
1988; Moggridge 2007). To embody the interface concepts in the software behind what
we see rendered in screens, graphical interfaces are designed with a ‘meta’ layer that we
now take for granted in computer devices as two-way dialogic systems. The ‘interface’,
as a semiotic substrate, is not simply a passive display for static representations, but
incorporates an input system layer for communicating semiotic agency (intentions,
choices, directions) back into the system for ongoing dialogic interaction with dynamic
configurations of representations projected into the physical substrates of the screen.

Our current interface designs support the ‘interactive computing paradigm’, which was
developed by using implicit semiotic principles for designing non-terminating programs
for multi-symbolic systems and recursive dialogic interpretive processes.27 Further, as
Licklider and Kay envisioned, a digital multimedia interactive computer system is not
correctly conceived as a medium, but as a metamedium, a medium for representing,
interpreting, communicating and creating new instances of all symbolic media. Our
contemporary computing paradigm is thus an implementation of Peirce’s dialogic model
for dynamic symbolic systems, which includes different kinds of semiotic agency in the
new combined system of human cognizers and distributed agency in many layers of
software and networked systems.

CONCLUSIONS
There can’t be a ‘semiotic approach’ to the study of computer systems, software, digital
media, interfaces or the internet because these technologies are constitutively and
structurally semiotic. That is, digital computing and information technologies are (1)
complex-system artefacts designed by means of the cognitive-symbolic capacities of human
sign-using communities, and (2) the whole architecture of subsystems and supporting
technologies follows telic design principles for serving human symbolic systems and their
corresponding patterns and actions of interpretation. Computer system design principles
provide homological maps for symbolic to physical correspondences that enact assigned
representations and operations. Any computer system, large, small or unobservable,
represents an implementable design of applied semiotic structures in a unified architecture
based on, and in the service of, human symbolic thought.

From a pragmatist semiotic perspective, the computer system is not just the complex
physical system of hardware, software and data (the hidden artefactual structures in
machines, networks and stored information), even when correctly described as semiotic
artefacts. The ‘computer system’ is actually the whole dialogic supersystem comprised
of semiotic agents (aka ‘users’), who are not independent individuals but members of
meaning-making communities, and computer systems embodying semiotic system design
for dialogic interaction. As Engelbart originally envisioned, human cognizers + dynamic
computational semiotic systems form a whole new third system not reducible to a sum
of the constituents. We are members and agents of the designed systems, presupposed
and included in the designs, not detached, empirical observers of a ‘machine’ (Winograd
and Flores 1987; Winograd 1997). We activate the built-in agency position in all the
interactive-dialogic relations with the physical architectures, in the ‘code’ of any running
software, in the affordances of interfaces, and in all accessed networked information,
near or far.

9781350139329_txt_rev.indd 224 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 225

There are many other levels and contexts of semiotic functions in the design and use
of software, databases, digital media, interfaces and AI, and these applications will open
up for semiotic description by extending the semiotic systems deblackboxing method
outlined here. Further, by extending Peirce’s semeiotic for our contemporary context,
we have an open opportunity for bridge-building across disciplines, for embracing all
knowledge domains relevant for semiotic research, and for reclaiming the foundational
history of ideas woven with Leibniz’s ‘mechanical thread’.

NOTES
1	 Leibniz’s philosophy of symbols and the metaphor of the ‘mechanical thread’ are in Leibniz

1975 (Loemker, ed.) and Dascal 1987. For the texts on Leibniz’s mechanical calculator,
the binary (‘dyadic’) number system and his binary calculator, see Leibniz [1679] 2010 and
[1710] 2009.

2	 For background on the intellectual history and theory from different disciplinary viewpoints,
see: Gorn 1968; Skagestad 1996; Andersen et al. 1997; Frank 2003; Gudwin and Queiroz
2005; Nadin 2007; Tedre 2014; Meunier 2018.

3	 On ‘deblackboxing’, see Latour 1999: 183–93, and 2002; on closed, locked-in computing
devices, see Zittrain 2009.

4	 On mapping principles in diagrammatic reasoning and applications in computer systems, see
Sowa 1984: 367–402; Glasgow, et al., eds. 1995; Goguen 1999; Sowa 2000a; Goguen and
Harrell 2005; Stjernfelt 2007; Denning and Martell 2015: 123–35.

5	 For background on the implicit and explicit semiotic foundations in the design history of
computing, which includes earlier logic machines, diagrams, ‘paper machines’, and pre-
digital methods for automating reasoning, see Gardner 1958; Webb 1980; Krämer 1988;
Aspray 1990; Marciszewski and Murawski 1995; Priestley 2011; von Plato 2017, and for the
intellectual history of computers as symbolic systems, see Mahoney 2011.

6	 For example: Engelbart 1963; Winograd and Flores 1987; Card and Moran 1988, and other
papers in Goldberg (ed) 1988; Rheingold 2000; Murray 2012; Manovich 2013; Rocchi
2013; Dasgupta 2014; Tedre 2014.

7	 The following studies from various schools of thought on cognition, computation, and the
computational theory of mind, include both implicit and explicit semiotic theory: Haugeland
1981a; Pylyshyn 1984; Schank and Childers 1984; Winograd and Flores 1987; Horst 1996;
Agre 1997; Cummins and Cummins 2000; Scheutz 2002; Nilsson 2007; Clark 2008; Dror
and Harnad 2008; Nilsson 2009; Rapaport 2012; Rescorla 2020.

8	 Peirce’s explicit definitions for his later program of Logic [considered] as Semeiotic begin in
1896 (MSS 900, 900(s), Logic of Mathematics) and 1897 (MSS 738 and 798, On logic and
semeiotic), and he develops the theory continuously from 1901–2 (in his drafts of the Minute
Logic project, especially MS 425, which treats ‘reasoning by machinery’) to his final papers
in 1913, a year before his death. On the first page of notebook pages from 1903, Peirce
wrote the title, Mathematics as It Is to Be Treated in My Logic Treated as Semeiotics (MS 66).
For general background, see Fisch 1986: 338–42, Colapietro 2003, Pietarinen 2006, and
Bellucci 2014. I treat Peirce’s Logic as Semeiotic in relation to computing, information, AI
and symbolic thought in a forthcoming book.

9	 In my comprehensive survey of Peirce’s writings from 1890 to 1914 (in thousands of pages of
his unpublished papers, and in his published articles and recent editions), I found that Peirce
uses the term Logic as Semeiotic (and equivalent phrases) over fifty times. During this period,

9781350139329_txt_rev.indd 225 08-07-2022 17:05:37

226	 BLOOMSBURY SEMIOTICS: VOLUME 2

Peirce’s preferred spelling is semeiotic, sometimes semiotic, and very rarely in the plural
form, semeiotics/semiotics (among over ninety uses of the terms). Peirce intended semeiotic
to preserve the meanings in the traditions of logic (Greek: semeiotike), represented by the
term used in works by John Locke and German logicians; but Peirce generalized semeiotic for
formalizing the structures of all sign systems, especially the necessary structures of reasoning
in mathematics and logic.

10	 See: Hintikka 1996; Anellis 2015; Øhrstrom 2017; and essays in Houser et al. 1997.
11	 The standard descriptions of computer system architecture and design principles are treated

in all textbooks on the subject; the following provide accessible orientations: Heuring and
Jordan 2003; Saltzer and Kaashoek 2009; and especially Tedre 2014 and Denning and
Martell 2015. For thorough technical descriptions, see Blaauw and Brooks 1997; Comer
2017; Hennessy and Patterson 2017; Patt and Patel 2020. Valuable for systems theory
concepts are Winograd and Flores 1987; Simon 1996; and Arthur 2011.

12	 For an orientation to the principle of levels of abstraction, subsystems, and system design see:
Simon 1996; Baldwin and Clark 2000; Floridi 2008; Gobbo and Benini 2014; Denning and
Martell 2015: 198–212; Rescorla 2017.

13	 Important studies that discuss or assume the cognitive artefact concept for computing, in
different disciplinary contexts, are: Gorn 1968; Norman 1991; Hutchins 1999; Mahoney
2005; Houkes and Vermaas 2010; Nadin 2011; Borgo et al. 2014; Kockelman 2017b;
Turner 2018; Anderson 2019; Sørensen et al. 2020.

14	 Important sources are Clark and Chalmers 1998; Latour 1999: 176–98; Hollan et al. 2000;
Dascal and Dror 2005; Zhang and Patel 2006; Dror 2007; Clark 2008; Dror and Harnad
2008; Enfield and Kockelman 2017; Kockelman 2017a.

15	 The story of Peirce’s unrecognized contributions to, and anticipations of, the foundations
of modern computing has yet to be told; for intellectual historical facts, connections, and
insights, see Ketner and Stewart 1984; Ketner 1988; Gandy 1995; Skagestad 1996; Nöth
1997, 2003; Nadin 2011, 2017.

16	 Researchers will find the selections of papers in EP2, NEM (ed. Eisele 1985), and SWS (ed.
Bellucci 2020) to be good starting points, but the most important writings from 1906 to
1912 that apply to computation, symbolic operations, and logical machines have not been
published. I provide a catalogue of these papers, and edited selections of the most important
sources, on my website: https://irvine.georgetown.domains/Peirce/.

17	 The sources for these concepts in Peirce’s papers are documented on my website: https://
irvine.georgetown.domains/Peirce/.

18	 The important developments in computing referenced here are documented in Ceruzzi 1983,
2003; Rheingold 2000; Ifrah 2001; Mahoney 2011; Davis 2012; and Campbell-Kelly and
Aspray 2014. For the key concepts in interface and interaction design for our GUI systems
from the 1960s on, see Goldberg (ed) 1988; and Moggridge 2007.

19	 Leibniz 1679, 1710; 1975 (Loemker, ed); Dascal 1987.
20	 Licklider 1960, 1965, 1977; Licklider and Clark 1962; Licklider and Taylor 1968; and see:

Waldrop 2001.
21	 Accessible and ‘semiotics aware’ introductions to computing and computer systems are

Tedre 2014; Denning and Martell 2015. Additional useful guides for the key concepts
in computation are Hilton 1963; Smith 1998, 2002; Mahoney 2011; Davis 2012. More
advanced accounts of the history of logic and automated reasoning, which reveal implicit
semiotic principles, are Marciszewski and Murawski 1995; Rojas and Hashagen 2000;
Priestley 2011; von Plato 2017.

9781350139329_txt_rev.indd 226 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 227

22	 See the papers from the ACM Ubiquity Symposium on ‘What Is Computation?’ (2011),
available online: https://ubiquity.acm.org/symposia2011.cfm. The papers were also published
in The Computer Journal 55 (7) (2012). This approach is also followed by Tedre (2014) and
Denning and Martell (2015), and assumed throughout in Rheingold (2000).

23	 To avoid confusion in terminology, we need to differentiate homology from analogy (any kind
of likeness or comparison) and from the related terms isomorphism and hom(e)omorphism,
used for strictly defined abstract, mathematical equivalences (as in category theory and
topology) (Krömer 2007; Marquis 2009). The term homology is also used in other sciences,
and you may find the terms from abstract mathematics used in the computing literature for
mappings in digital architecture. But homology, in the general sense defined by Peirce, is the
most appropriate term for the one-to-one, formal-to-physical imposed correspondences in
digital computer system design.

24	 ‘Information Theory’, as defined in electrical engineering and digital design, is continually
misunderstood and mystified. For sources and useful explanations, see Shannon and Weaver
1949; Pierce 1980; Frank 2003; Gleick 2011; Nadin 2011; Denning and Martell 2015:
35–58; the implicit and explicit semiotic foundations of digital information are also discussed
in MacKay 1969 and essays in Machlup and Mansfield (eds) 1983.

25	 Accessible introductions are Turbak and Gifford 2008; Martin 2010; Denning and Martell
2015: 83–121.

26	 The binary code translator programs are called ‘compilers’ and ‘interpreters’.
27	 Important sources for supporting a semiotic view of interactive systems are Engelbart 1963;

Hutchins et al. 1985; Agre and Rosenschein 1996; Wegner 1997; De Souza 2005; Goldin et
al. 2006; Moggridge 2007; Murray 2012.

REFERENCES
Abbott, R. (2019), ‘The Bit (and Three Other Abstractions) Define the Borderline between

Hardware and Software’, Minds and Machines, 29/2: 239–85.
Agre, P. E. (1995), ‘The Soul Gained and Lost: Artificial Intelligence as a Philosophical Project’,

Stanford Humanities Review, 4/2: 1–19.
Agre, P. E. (1997), Computation and Human Experience, Cambridge; New York: Cambridge

University Press.
Agre, P. E. and S. J. Rosenschein, eds (1996), Computational Theories of Interaction and

Agency, Cambridge, MA: MIT Press.
Ambrosio, C. (2014), ‘Iconic Representations and Representative Practices’, International

Studies in the Philosophy of Science, 28/3: 255–75.
Anderson, N. G. (2019), ‘Information Processing Artifacts’, Minds and Machines, 29/2:

193–225.
Andersen, P. B., B. Holmqvist, and J. F. Jensen, eds (1993), The Computer as Medium,

Cambridge: Cambridge University Press.
Andersen, P. B., P. Hasle, and P. A. Brandt (1997), ‘Machine Semiosis’, in Roland Posner,

Klaus Robering, and Thomas A., Sebeok (eds), Semiotik/Semiotics: A Handbook on the
Sign-Theoretic Foundations of Nature and Culture, vol. 1, 548–71, Berlin and New York:
Mouton De Gruyter.

Anellis, I. H. (2015), ‘Peirce’s Role in the History of Logic: Lingua Universalis and Calculus
Ratiocinator’, in Arnold Koslow and Arthur Buchsbaum (eds), The Road to Universal Logic,
vols 1–2, vol. 2, 135–69, Cham: Birkhäuser and Springer.

9781350139329_txt_rev.indd 227 08-07-2022 17:05:37

228	 BLOOMSBURY SEMIOTICS: VOLUME 2

Arthur, W. B. (2011), The Nature of Technology: What It Is and How It Evolves, New York:
Free Press.

Aspray, W., ed. (1990), Computing before Computers, Ames, IA: Iowa State Press.
Baldwin, C. Y. and K. B. Clark (2000), Design Rules, Vol. 1: The Power of Modularity,

Cambridge, MA: MIT Press.
Barbosa, Simone Diniz Junqueira, and Karin Breitman, eds (2017), Conversations Around

Semiotic Engineering, Cham, Switzerland: Springer.
Bellucci, F. (2014), ‘“Logic, Considered as Semeiotic”: On Peirce’s Philosophy of Logic’,

Transactions of the Charles S. Peirce Society, 50/4: 523–47.
Blaauw, G. A. and F. P. Brooks (1997), Computer Architecture: Concepts and Evolution,

Reading, MA: Addison-Wesley.
Blanchette, J. F. (2011), ‘A Material History of Bits’, Journal of the American Society for

Information Science and Technology, 62 (6): 1042–57.
Borgo, S., M. Franssen, P. Garbacz, Y. Kitamura, R. Mizoguchi, and P. E. Vermaas (2014),

‘Technical Artifacts: An Integrated Perspective’, Applied Ontology, 9 (3–4): 217–35.
Bush, V. (1945), ‘As We May Think’, The Atlantic, July: 101–8.
Campbell-Kelly, M. and S. B. Russ (1994), ‘Computing and Computers’, in Ivor Grattan-

Guinness (ed.), Companion Encyclopedia of the History and Philosophy of the Mathematical
Sciences, vols. 1 and 2, 701–7, London; New York: Routledge.

Campbell-Kelly, M. and W. Aspray (2014), Computer: A History of the Information Machine,
3rd edn, Boulder, CO: Westview Press.

Card, S. K. and T. P. Moran (1988), ‘User Technology–from Pointing to Pondering’, in Adele
Goldberg (ed.), A History of Personal Workstations, 489–521, New York: ACM Press and
Addison-Wesley.

Ceruzzi, P. E. (1983), Reckoners: The Prehistory of the Digital Computer, from Relays to the
Stored Program Concept, 1935–45, Westport, CT: Greenwood.

Ceruzzi, P. E. (2003), A History of Modern Computing, 2nd edn, Cambridge, MA: MIT Press.
Cherry, C. (1957), On Human Communication: A Review, a Survey, and a Criticism,

Cambridge, MA: MIT Press.
Clark, A. (2008), Supersizing the Mind: Embodiment, Action, and Cognitive Extension, New

York: Oxford University Press.
Clark, A. and D. Chalmers (1998), ‘The Extended Mind’, Analysis, 58 (1): 7–19.
Colapietro, V. (2003), ‘The Space of Signs: C. S. Peirce’s Critique of Psychologism’, in Dale

Jacquette (ed.), Philosophy, Psychology, and Psychologism: Critical and Historical Readings
on the Psychological Turn in Philosophy, 157–80, Dordrecht; Boston: Kluwer.

Comer, D. E. (2017), Essentials of Computer Architecture, 2nd edn, Boca Raton: CRC Press.
Conery, J. S. (2012), ‘Computation Is Symbol Manipulation’, The Computer Journal, 55 (7):

814–16.
Cummins, R. and D. D. Cummins, eds (2000), Minds, Brains, and Computers: An Historical

Introduction to the Foundations of Cognitive Science, Malden, MA: Wiley-Blackwell.
Dascal, M. (1987), Leibniz – Language, Signs and Thought: A Collection of Essays, Amsterdam;

Philadelphia: John Benjamins.
Dascal, M. and I. E. Dror (2005), ‘The Impact of Cognitive Technologies: Towards a Pragmatic

Approach’, Pragmatics & Cognition, 13 (3): 451–7.
Dasgupta, S. (2014), It Began with Babbage: The Genesis of Computer Science, Oxford, UK:

Oxford University Press.
Davis, M. (2012), The Universal Computer: The Road from Leibniz to Turing, Boca Raton, FL:

CRC Press.

9781350139329_txt_rev.indd 228 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 229

De Souza, C. S. (2005), The Semiotic Engineering of Human-Computer Interaction, Cambridge,
MA: MIT Press.

Denning, P. J. (2012), ‘Opening Statement: What Is Computation?’, The Computer Journal, 55
(7): 805–10.

Denning, P. J. and C. H. Martell (2015), Great Principles of Computing, Cambridge, MA: MIT
Press.

Dror, I. E. (2007), Cognitive Technologies and the Pragmatics of Cognition, Amsterdam;
Philadelphia: John Benjamins.

Dror, I. E. and S. R. Harnad, eds (2008), Cognition Distributed: How Cognitive Technology
Extends Our Minds, Amsterdam; Philadelphia: John Benjamins.

Eisele, C. (1979), Studies in the Scientific and Mathematical Philosophy of Charles S. Peirce, ed.
R. M. Martin, The Hague: Mouton De Gruyter.

Eisele, C., ed. (1985), Historical Perspectives on Peirce’s Logic of Science: Parts I and II, vols.
1–2, Berlin; New York: De Gruyter Mouton.

Enfield, N. J. and P. Kockelman, eds (2017), Distributed Agency, Oxford; New York: Oxford
University Press.

Engelbart, D. C. (1963), ‘A Conceptual Framework for the Augmentation of Man’s Intellect’,
in Paul W. Howerton and David C. Weeks (eds), Vistas in Information Handling, Volume I:
The Augmentation of Man’s Intellect by Machine, 1–29, Washington, DC: Spartan Books.

Engelbart, D. C. (1988), ‘The Augmented Knowledge Workshop’, in Adele Goldberg (ed.),
A History of Personal Workstations, 185–248, New York: ACM.

Eschbach, A. and J. Trabant, eds (1983), History of Semiotics, Amsterdam; Philadelphia: John
Benjamins.

Fetzer, J. H. (1988), ‘Signs and Minds: An Introduction to the Theory of Semiotic Systems’,
in James H. Fetzer (ed.), Aspects of Artificial Intelligence, 133–61, Dordrecht and Boston:
Kluwer.

Fetzer, J. H. (1997), ‘Thinking and Computing: Computers as Special Kinds of Signs’, Minds
and Machines, 7 (3): 345–64.

Fetzer, J. H. (2001), Computers and Cognition: Why Minds Are Not Machines, Dordrecht:
Springer.

Fetzer, J. H. (2004), ‘Peirce and the Philosophy of Artificial Intelligence’, in M. Bergman
and J. Queiroz (eds), The Commens Encyclopedia: The Digital Encyclopedia of Peirce
Studies, New edn. http://www.commens.org/encyclopedia/article/fetzer-james-peirce-and-
philosophy-artificial-intelligence.

Fisch, M. H. (1986), Peirce, Semeiotic and Pragmatism, Bloomington: Indiana University Press.
Floridi, L. (2008), ‘The Method of Levels of Abstraction’, Minds and Machines, 18 (3): 303–29.
Frank, H. (2003), ‘Semiotik und Informationstheorie’, in Roland Posner, Klaus Robering, and

Thomas A. Sebeok (eds), Semiotik/Semiotics: A Handbook on the Sign-Theoretic Foundations
of Nature and Culture, vol. 3, 2418–37, Berlin and New York: Mouton De Gruyter.

Gabbay, D. M. and J. Woods, eds. (2004), Handbook of the History of Logic, Vol. 3: The Rise
of Modern Logic from Leibniz to Frege, Amsterdam; Boston: North Holland.

Gabbay, D. M., J. H. Siekmann, and J. Woods, eds (2014), Handbook of the History of Logic,
Vol. 9: Computational Logic, Amsterdam: North Holland.

Gandy, R. (1995), ‘The Confluence of Ideas in 1936’, in Rolf Herken (ed.), The Universal
Turing Machine: A Half-Century Survey, 50–102, Wien; New York: Springer.

Gardner, M. (1958), Logic Machines and Diagrams, New York: McGraw–Hill.
Glasgow, J., N. Hari, and B. Chandrasekaran, eds (1995), Diagrammatic Reasoning: Cognitive

and Computational Perspectives, Cambridge, MA: AAAI Press.

9781350139329_txt_rev.indd 229 08-07-2022 17:05:37

230	 BLOOMSBURY SEMIOTICS: VOLUME 2

Gleick, J. (2011), The Information: A History, a Theory, a Flood, New York: Pantheon.
Gobbo, F. and M. Benini (2014), ‘The Minimal Levels of Abstraction in the History of Modern

Computing’, Philosophy & Technology, 27 (3): 327–43.
Goguen, J. A. (1999), ‘An Introduction to Algebraic Semiotics, with Application to User

Interface Design’, in Chrystopher L. Nehaniv (ed.), Computation for Metaphors, Analogy,
and Agents, 242–91, Berlin and Heidelberg: Springer.

Goguen, J. A. (2003), ‘Semiotic Morphisms, Representations and Blending for Interface
Design’, in F. Spoto, G. Scollo, and A. Nijholt (eds), Algebraic Methods in Language
Processing, vol. 21, 1–15, Twente: University of Twente.

Goguen, J. A. and D. F. Harrell (2005), ‘Information Visualization and Semiotic Morphisms’,
in Grant Malcolm (ed.), Multidisciplinary Approaches to Visual Representations and
Interpretations, vol. 2, 83–98, Amsterdam; London: Elsevier.

Goldberg, A., ed. (1988), A History of Personal Workstations, New York: ACM Press; Addison-
Wesley.

Goldin, D., S. A. Smolka, and P. Wegner, eds (2006), Interactive Computation: The New
Paradigm, Berlin; New York: Springer.

Goldstine, H. H. and J. Von Neumann (1963), ‘Planning and Coding Problems for an
Electronic Computing Instrument, Part II, vol. 1 (1946)’, in A. H. Taub (ed.), Collected
Works, Vol. 5: Design of Computers, Theory of Automata and Numerical Analysis, vol. 5,
80–151, Oxford; London; New York: Pergamon Press.

Gomes, A., R. Gudwin, C. N. El-Hani, and J. Queiroz (2007), ‘Towards the Emergence of
Meaning Processes in Computers from Peircean Semiotics’, Mind & Society, 6 (2): 173–87.

Gorn, S. (1967), ‘The Computer and Information Sciences and the Community of Disciplines’,
Behavioral Science, 12 (6): 433–52.

Gorn, S. (1968), ‘The Identification of the Computer and Information Sciences: Their
Fundamental Semiotic Concepts and Relationships’, Foundations of Language, 4 (4):
339–72.

Gorn, S. (1983), ‘Informatics (Computer and Information Science): Its Ideology, Methodology,
and Sociology’, in Fritz Machlup and Una Mansfield (eds), The Study of Information:
Interdisciplinary Messages, 121–40, New York: Wiley-Interscience.

Grier, D. A. (2005), When Computers Were Human, Princeton: Princeton University Press.
Gudwin, R. and J. Queiroz (2005), ‘Towards an Introduction to Computational Semiotics’,

in International Conference on Integration of Knowledge Intensive Multi-Agent Systems
(KIMAS 2005), 393–8, Waltham, MA: IEEE.

Gudwin, R. R. (1999), ‘Umwelts and Artificial Devices: A Reflection on the Text of Claus
Emeche: Does a Robot have an Umwelt ?’ Seminário Avançado de Comunicação e Semiótica
2: 51–6.

Haugeland, J., ed. (1981a), Mind Design: Philosophy Psychology Artificial Intelligence,
Cambridge, MA: MIT Press.

Haugeland, J., ed. (1981b), ‘Semantic Engines: An Introduction to Mind Design’, in Mind
Design: Philosophy Psychology Artificial Intelligence, 2–33, Cambridge, MA: MIT Press.

Haugeland, J. (1985), Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press.
Hennessy, J. L. and D. A. Patterson (2017), Computer Architecture: A Quantitative Approach,

6th edn, Cambridge, MA: Morgan Kaufmann.
Heuring, V. P. and H. F. Jordan (2003), Computer Systems Design and Architecture, 2nd edn,

Upper Saddle River, N.J: Pearson.
Hilton, A. M. (1963), Logic, Computing Machines, and Automation, Cleveland, OH: Meridian

Books.

9781350139329_txt_rev.indd 230 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 231

Hintikka, J. (1996), ‘The Place of C. S. Peirce in the History of Logical Theory’, in Lingua
Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century
Philosophy, 140–61, Dordrecht: Kluwer.

Hollan, J., E. Hutchins, and D. Kirsh (2000), ‘Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research’, ACM Transactions, Computer-
Human Interaction, 7 (2): 174–96.

Horst, S. W. (1996), Symbols, Computation, and Intentionality: A Critique of the
Computational Theory of Mind, Berkeley: University of California Press.

Houkes, W. and P. E. Vermaas (2010), Technical Functions: On the Use and Design of
Artefacts, Dordrecht; New York: Springer.

Houser, N., D. D. Roberts, and J. Van Evra, eds (1997), Studies in the Logic of Charles Sanders
Peirce, Bloomington: Indiana University Press.

Hutchins, E. L. (1999), ‘Cognitive Artifacts’, in Robert A. Wilson and Frank Keil (eds), The
MIT Encyclopedia of the Cognitive Sciences, 126–8, Cambridge, MA: MIT Press.

Hutchins, E. L., J. D. Hollan, and D. A. Norman (1985), ‘Direct Manipulation Interfaces’,
Human-Computer Interaction, 1 (4): 311–38.

Ifrah, G. (2001), The Universal History of Computing: From the Abacus to the Quantum
Computer, New York: Wiley.

Jorna, R. J., B. Van Heusden, and R. Posner, eds (1993), Signs, Search and Communication:
Semiotic Aspects of Artificial Intelligence, Berlin; New York: De Gruyter.

Kay, A. (1972), A Personal Computer for Children of All Ages, Palo Alto, CA: Xerox PARC.
Kay, A. (1984), ‘Computer Software’, Scientific American, 251 (3): 52–9.
Kay, A. (2001), ‘User Interface: A Personal View’, in Randall Packer and Ken Jordan (eds),

Multimedia: From Wagner to Virtual Reality, 121–31, New York: W.W. Norton.
Kay, A. and A. Goldberg (1977), ‘Personal Dynamic Media’, Computer, 10 (3): 31–41.
Ketner, K. L. (1988), ‘Peirce and Turing: Comparisons and Conjectures’, Semiotica, 68 (1/2):

33–61.
Ketner, K. L. and A. F. Stewart (1984), ‘The Early History of Computer Design: Charles

Sanders Peirce and Marquand’s Logical Machines’, The Princeton University Library
Chronicle, 45 (3): 187–225.

Kockelman, P. (2005), ‘The Semiotic Stance’, Semiotica, 2005 (157): 233–304.
Kockelman, P. (2006), ‘Residence in the World: Affordances, Instruments, Actions, Roles, and

Identities’, Semiotica, 2006 (162): 19–71.
Kockelman, P. (2010), ‘Semiotics: Interpretants, Inference, and Intersubjectivity’, in

Ruth Wodak, Barbara Johnstone, and Paul E. Kerswill (eds), The SAGE Handbook of
Sociolinguistics, 165–78, Thousand Oaks, CA: SAGE Publications.

Kockelman, P. (2017a), ‘Semiotic Agency’, in N. J. Enfield and Paul Kockelman (eds),
Distributed Agency, 25–38, Oxford; New York: Oxford University Press.

Kockelman, P. (2017b), The Art of Interpretation in the Age of Computation, New York:
Oxford University Press.

Krämer, S. (1988), Symbolische Maschinen: Die Idee Der Formalisierung in Geschichtlichem
Abriss, Darmstadt: Wissenschaftliche Buchgesellschaft.

Krömer, R. (2007), Tool and Object: A History and Philosophy of Category Theory, Basel;
Boston: Birkhäuser.

Latour, B. (1999), Pandora’s Hope: Essays on the Reality of Science Studies, Cambridge, MA:
Harvard University Press.

Latour, B. (2002), ‘Morality and Technology’, Theory, Culture & Society, 19 (5–6): 247–60.

9781350139329_txt_rev.indd 231 08-07-2022 17:05:37

232	 BLOOMSBURY SEMIOTICS: VOLUME 2

Leibniz, G. W. ([1679] 2010), ‘De Progressione Dyadica (Hannover MS), with Facsimile and
Translation (Fr.)’ (Y. Serra, ed.). https://archive.org/details/69LeibnizDiadica.

Leibniz, G. W. ([1710] 2009), ‘La machine arithmétique de Leibniz (1710) (with Illustrations)’
(Y. Serra and C.C. Adam, eds). https://archive.org/details/41Leibniz.

Leibniz, G. W. (1975), Philosophical Papers and Letters: A Selection, 2nd edn, ed. and trans.
L. E. Loemker, Dordrecht; Boston: Kluwer.

Licklider, J. C. R. (1960), ‘Man-Computer Symbiosis’, IRE Transactions on Human Factors in
Electronics, HFE-1/1: 4–11.

Licklider, J. C. R. (1965), Libraries of the Future, Cambridge, MA: MIT Press.
Licklider, J. C. R. (1968), ‘Computer Graphics as a Medium of Artistic Expression’, in

Metropolitan Museum of Art (ed.), Computers and Their Potential Applications in Museums,
273–301, New York: Arno Press.

Licklider, J. C. R. (1977), ‘User-Oriented Interactive Computer Graphics’, in Proceedings of
the ACM/SIGGRAPH Workshop on User-oriented Design of Interactive Graphics Systems,
89–96, New York: ACM.

Licklider, J. C. R. and W. E. Clark (1962), ‘On-Line Man-Computer Communication’, in
Proceedings of the May 1–3,1962, Spring Joint Computer Conference, 113–28, New York:
ACM.

Licklider, J. C. R. and R. W. Taylor (1968), ‘The Computer as a Communication Device’,
Science and Technology, 76: 21–38.

Liu, K. (2000), Semiotics in Information Systems Engineering, Cambridge; New York:
Cambridge University Press.

Machlup, F. and U. Mansfield, eds (1983), The Study of Information: Interdisciplinary
Messages, New York: Wiley-Interscience.

MacKay, D. M. (1969), Information, Mechanism and Meaning, Cambridge, MA: MIT Press.
Mahoney, M. S. (2005), ‘The Histories of Computing(s)’, Interdisciplinary Science Reviews, 30

(2): 119–35.
Mahoney, M. S. (2011), Histories of Computing, Cambridge, MA: Harvard University Press.
Malcolm, G. and J. A. Goguen (1999), ‘Signs and Representations: Semiotics for User Interface

Design’, in Ray Paton and Irene Neilsen (eds), Visual Representations and Interpretations,
162–72, London; New York: Springer.

Manovich, L. (2013), Software Takes Command: Extending the Language of New Media,
London: Bloomsbury.

Marciszewski, W. and R. Murawski (1995), Mechanization of Reasoning in a Historical
Perspective, Amsterdam; Atlanta: Rodopi.

Marcus, G. F. (2001), The Algebraic Mind: Integrating Connectionism and Cognitive Science,
Cambridge, MA: MIT Press.

Marquis, J. P. (2009), From a Geometrical Point of View: A Study of the History and Philosophy
of Category Theory, Dordrecht: Springer.

Martin, J. (2010), Introduction to Languages and the Theory of Computation, 4th edn, New
York: McGraw-Hill.

Meunier, J.-G. (1989), ‘Artificial Intelligence and Sign Theory’, Semiotica, 77 (1–3): 43–64.
Meunier, J.-G. (1998), ‘Categorial Structure of Iconic Languages’, Theory and Psychology, 8

(6): 805–27.
Meunier, J.-G. (2018), ‘Vers une Sémiotique Computationnelle?’, Applied Semiotics /

Sémiotique appliquée, 26: 76–107.
Moggridge, B. (2007), Designing Interactions, Cambridge, MA: MIT Press.

9781350139329_txt_rev.indd 232 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 233

Morris, C. W. (1938), Foundations of the Theory of Signs, Chicago, IL: University of Chicago
Press.

Morris, C. W. (1946), Signs, Language and Behavior, New York: Prentice Hall.
Morris, C. W. (1964), Signification and Significance: A Study of the Relations of Signs and

Values, Cambridge, MA: MIT Press.
Murray, J. H. (2012), Inventing the Medium: Principles of Interaction Design as a Cultural

Practice, Cambridge, MA: MIT Press.
Nadin, M. (1988a), ‘Interface Design: A Semiotic Paradigm’, Semiotica, 69 (3/4): 269–302.
Nadin, M. (1988b), ‘Interface Design and Evaluation: Semiotic Implications’, in H. Rex

Hartson and Deborah Hix (eds), Advances in Human-Computer Interaction, vol. 2, 45–100,
Norwood, N.J: Ablex.

Nadin, M. (1998), ‘Computer’, in Paul Bouissac (ed.), Encyclopedia of Semiotics (Online),
Oxford: Oxford University Press.

Nadin, M. (2007), ‘Semiotic Machine’, The Public Journal of Semiotics, 1 (1): 57–75.
Nadin, M. (2011), ‘Information and Semiotic Processes: The Semiotics of Computation’,

Cybernetics & Human Knowing, 18 (1–2): 153–75.
Nadin, M. (2017), ‘Semiotic Engineering – An Opportunity or an Opportunity Missed?’, in

Simone Diniz Junqueira Barbosa and Karin Breitman (eds), Conversations Around Semiotic
Engineering, 41–63, Cham, Switzerland: Springer.

Nake, F. (1997), ‘Der semiotische Charakter der informatischen Gegenstände’, Semiosis,
85–90: 24–35.

Nake, F. (1999), ‘Bildgeschichten aus Zahlen und Zufall: Betrachtungen zur Computerkunst’,
in Andreas Dress and Gottfried Jäger (eds), Visualisierung in Mathematik, Technik und
Kunst: Grundlagen und Anwendungen, 117–36, Wiesbaden: Vieweg+Teubner.

Nake, F. (2002), ‘Werk, Kunstwerk, Information, Zeichen’, in Udo Bayer and Karl Gfesser
(eds), Kontinuum der Zeichen: Elisabeth Walther-Bense und die Semiotik, 9–13, Stuttgart:
J.B. Metzler.

Nake, F. (2008a), ‘Surface, Interface, Subface: Three Cases of Interaction and One Concept’,
in Uwe Seifert et al. (eds), Paradoxes of Interactivity: Perspectives for Media Theory,
Human-Computer Interaction, and Artistic Investigations, 92–109, Berlin: Boston:
Transcript Verlag.

Nake, F. (2008b), ‘Work, Design, Computers, Artifacts’, in Thomas Binder, Jonas Löwgren,
and Lone Malmborg (eds) (Re)Searching the Digital Bauhaus, 309–31, London: Springer.

Nake, F. (2009), ‘The Semiotic Engine: Notes on the History of Algorithmic Images in Europe’,
Art Journal, 68 (1): 76–89.

Nake, F. and S. Grabowski (2006), ‘The Interface as Sign and as Aesthetic Event’, in Paul
A. Fishwick (ed.), Aesthetic Computing, 53–70, Cambridge, MA: MIT Press.

Newell, A. (1980), ‘Physical Symbol Systems’, Cognitive Science, 4 (2): 135–83.
Newell, A. (1986), ‘The Symbol Level and the Knowledge Level’, in Zenon W. Pylyshyn and

William Demopoulos (eds), Meaning and Cognitive Structure: Issues in the Computational
Theory of Mind, Norwood, NJ: Praeger.

Newell, A. and H. A. Simon (1961), ‘Computer Simulation of Human Thinking’, Science, 134
(3495): 2011–17.

Newell, A. and H. A. Simon (1972), Human Problem Solving, Englewood Cliffs, NJ: Prentice
Hall.

Newell, A. and H. A. Simon (1976), ‘Computer Science as Empirical Inquiry: Symbols and
Search’, Communications of the ACM, 19 (3): 113–26.

9781350139329_txt_rev.indd 233 08-07-2022 17:05:37

234	 BLOOMSBURY SEMIOTICS: VOLUME 2

Newell, A. and H. A. Simon (2003), ‘Symbol Manipulation’, in Encyclopedia of Computer
Science, 1731–5, Chichester, UK: John Wiley and Sons.

Nilsson, N. J. (2007), ‘The Physical Symbol System Hypothesis: Status and Prospects’, in
Max Lungarella, Fumiya Iida, Josh Bongard, and Rolf Pfeifer (eds), 50 Years of Artificial
Intelligence, 9–17, Berlin and Heidelberg: Springer.

Nilsson, N. J. (2009), The Quest for Artificial Intelligence: A History of Ideas and Achievements,
Cambridge, UK: Cambridge University Press.

Nisan, N. and S. Schocken (2005), The Elements of Computing Systems: Building a Modern
Computer from First Principles, Cambridge, MA: MIT Press.

Norman, D. A. (1991), ‘Cognitive Artifacts’, in John M. Carroll (ed.), Designing Interaction,
17–38, New York: Cambridge University Press.

Norman, D. A. and S. W. Draper, eds (1986), User Centered System Design: New Perspectives
on Human-computer Interaction, Hillsdale, NJ: Lawrence Erlbaum Associates.

Nöth, W. (1997), ‘Representation in Semiotics and in Computer Science’, Semiotica, 115 (3/4):
203–13.

Nöth, W. (2002), ‘Semiotic Machines’, Cybernetics & Human Knowing, 9 (1): 5–21.
Nöth, W. (2003), ‘Semiotic Machines’, SEED Journal, 3 (3): 81–99.
Øhrstrom, P. (2017), ‘C. S. Peirce’, in Alex Malpass and Marianna Antonutti Marfori (eds), The

History of Philosophical and Formal Logic: From Aristotle to Tarski, 165–81, London; New
York: Bloomsbury.

Patt, Y. and S. Patel (2020), Introduction to Computing Systems: From Bits & Gates to C/C++
& Beyond, 3rd edn, New York: McGraw-Hill.

Peirce, C. S. ([1857–92] 1982–2010), Writings of Charles S. Peirce, 7 vols. (1–6, 8), Peirce
Edition Project (eds), Bloomington: Indiana University Press. Cited as W.

Peirce, C. S. ([1857–1914] 1787–1951), The Charles S. Peirce Papers Harvard University,
Houghton Library, MS Am 1632. Individual papers are referenced by manuscript number
in R. Robin (ed.), Annotated Catalogue of the Papers of Charles S. Peirce, Amherst:
University of Massachusetts Press, 1967, and in Robin, ‘The Peirce Papers: A Supplementary
Catalogue’, Transactions of the Charles S. Peirce Society 7, 1971: 37–57. Cited as MS.

Peirce, C. S. ([1866–1913] 1976), The New Elements of Mathematics, 4 vols., C. Eisele (ed.),
The Hague: Mouton Press. Cited as NEM.

Peirce, C. S. (1889–91), entries in The Century Dictionary: An Encyclopedic Lexicon of the
English Language, W. D. Whitney (ed.), New York: Century Co. Cited as CD.

Peirce, C. S. ([1893–1913] 1998), The Essential Peirce: Selected Philosophical Writings, vol. 2,
eds. Peirce Edition Project, Bloomington: Indiana University Press. Cited as EP 2.

Peirce, C. S. ([1894–1912] 2020), Selected Writings on Semiotics, 1894–1912, ed. F. Bellucci,
Berlin: Mouton De Gruyter. Cited as SWS.

Pierce, J. R. (1980), An Introduction to Information Theory: Symbols, Signals and Noise, 2nd
edn, first publ. 1961. New York: Dover.

Pietarinen, A. V. (2006), Signs of Logic: Peircean Themes on the Philosophy of Language,
Games, and Communication, Dordrecht; London: Springer.

Posner, R., H. Klein, P. B. Andersen, and B. Holmqvist (1996), Signs of Work: Semiosis and
Information Processing in Organisations. Berlin: De Gruyter.

Posner, R., K. Robering, and T. A. Sebeok, eds. (1997–2003), Semiotik/Semiotics: A Handbook
on the Sign-Theoretic Foundations of Nature and Culture, 1–3 vols., Berlin; New York:
Mouton De Gruyter.

Priestley, M. (2011), A Science of Operations: Machines, Logic and the Invention of
Programming, New York; London: Springer.

9781350139329_txt_rev.indd 234 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 235

Pylyshyn, Z. W. (1984), Computation and Cognition: Toward a Foundation for Cognitive
Science, Cambridge, MA: MIT Press.

Queiroz, J. and F. Merrell (2009), ‘On Peirce’s Pragmatic Notion of Semiosis: A Contribution
for the Design of Meaning Machines’, Minds & Machines, 19 (1): 129–43.

Ransdell, Joseph (2003), ‘The Relevance of Peircean Semiotic to Computational Intelligence
Augmentation’, SEED Journal, 3 (3): 5–36.

Rapaport, W. J. (1999), ‘Implementation is Semantic Interpretation’, The Monist, 82 (1):
109–30.

Rapaport, W. J. (2012), ‘Semiotic Systems, Computers, and the Mind: How Cognition Could
Be Computing’, International Journal of Signs and Semiotic Systems, 2 (1): 32–71.

Rapaport, W. J. (2018), ‘What Is a Computer? A Survey’, Minds and Machines, 28 (3):
385–426.

Rescorla, M. (2017), ‘Levels of Computational Explanation’, in Thomas M. Powers (ed.),
Philosophy and Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics,
5–28, Cham, CH: Springer.

Rescorla, M. (2020), ‘The Computational Theory of Mind’, in Edward N. Zalta (ed.), The
Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University.
https://plato.stanford.edu/entries/computational-mind/.

Rheingold, H. (2000), Tools for Thought: The History and Future of Mind-Expanding
Technology, revised edn, Cambridge, MA: MIT Press.

Robinson, J. A. (1979), Logic: Form and Function: The Mechanization of Deductive Reasoning,
Edinburgh: Edinburgh University Press.

Robinson, J. A. and A. Voronkov, eds (2001), Handbook of Automated Reasoning, 1–2 vols.
Amsterdam and Cambridge, MA: North Holland and MIT Press.

Rocchi, P. (2013), Logic of Analog and Digital Machines, Hauppauge, NY: Nova Science.
Rojas, R. and U. Hashagen, eds (2000), The First Computers: History and Architectures,

Cambridge, MA: MIT Press.
Saltzer, J. H. and M. F. Kaashoek (2009), Principles of Computer System Design: An

Introduction, Burlington, MA: Morgan Kaufmann.
Schank, R. C. and P. G. Childers (1984), The Cognitive Computer: On Language, Learning, and

Artificial Intelligence, Reading, MA: Addison-Wesley.
Scheutz, M., ed. (2002), Computationalism: New Directions, Cambridge, MA: MIT Press.
Shannon, C. E. (1938), ‘A Symbolic Analysis of Relay and Switching Circuits’, Transactions of

the American Institute of Electrical Engineers, 57 (12): 713–23.
Shannon, C. E. (1948), ‘A Mathematical Theory of Communication’, The Bell System Technical

Journal, 27: 379–423, 623–56.
Shannon, C. E. and W. Weaver (1949), The Mathematical Theory of Communication,

Champaign, IL: University of Illinois.
Shneiderman, B. (1982), ‘The Future of Interactive Systems and the Emergence of Direct

Manipulation’, Behaviour & Information Technology, 1 (3): 237–56.
Shneiderman, B. (1983), ‘Direct Manipulation: A Step Beyond Programming Languages’, IEEE

Computer, 16 (8): 57–69.
Shneiderman, B. (1997), Designing the User Interface, 3rd edn, Reading, MA: Addison Wesley.
Simon, H. A. (1993), ‘The Human Mind: The Symbolic Level’, Proceedings of the American

Philosophical Society, 137 (4): 638–47.
Simon, H. A. (1996), The Sciences of the Artificial, 3rd edn, first published, 1969. Cambridge,

MA: MIT Press.

9781350139329_txt_rev.indd 235 08-07-2022 17:05:37

236	 BLOOMSBURY SEMIOTICS: VOLUME 2

Skagestad, P. (1993), ‘Thinking with Machines: Intelligence Augmentation, Evolutionary
Epistemology, and Semiotic’, Journal of Social and Evolutionary Systems, 16 (2): 157–80.

Skagestad, P. (1996), ‘The Mind’s Machines: The Turing Machine, the Memex, and the
Personal Computer’, Semiotica, 111 (3/4): 217–43.

Skagestad, P. (1999), ‘Peirce’s Inkstand as an External Embodiment of Mind’, Transactions of
the Charles S. Peirce Society, 35 (3): 551–61.

Smith, B. C. (1998), On the Origin of Objects, Cambridge, MA: MIT Press.
Smith, B. C. (2002), ‘The Foundations of Computing’, in Matthias Scheutz (ed.),

Computationalism: New Directions, 23–58, Cambridge, MA: MIT Press.
Sørensen, B., T. Thellefsen, and M. Thellefsen (2020), ‘A Peircean Semiotics of Technological

Artefacts’, in Tony Jappy (ed.), The Bloomsbury Companion to Contemporary Peircean
Semiotics, 253–75, London: Bloomsbury.

Sowa, J. F. (1984), Conceptual Structures: Information Processing in Mind and Machine,
Reading, MA: Addison-Wesley.

Sowa, J. F., ed. (1991), Principles of Semantic Networks: Explorations in the Representation of
Knowledge, San Mateo, CA: Morgan Kaufmann.

Sowa, J. F. (2000a), Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Pacific Grove: Brooks/Cole; Thomson.

Sowa, J. F. (2000b), ‘Ontology, Metadata, and Semiotics’, in Bernhard Ganter and Guy W.
Mineau (eds), Conceptual Structures: Logical, Linguistic, and Computational Issues: 8th
International Conference on Conceptual Structures, ICCS 2000, 55–81, Berlin; New York:
Springer.

Sowa, J. F. (2006), ‘Conceptual Graphs’, in Peter Bernus, Kai Mertins, and Günter J. Schmidt
(eds), Handbook on Architectures of Information Systems, 295–320, Berlin and New York:
Springer.

Sowa, J. F. (2011), ‘Future Directions for Semantic Systems’, in Andreas Tolk and Lakhmi C.
Jain (eds), Intelligence-Based Systems Engineering, 23–48, Berlin; Heidelberg: Springer.

Steels, L. (2007), ‘Fifty Years of AI: From Symbols to Embodiment – and Back’, in Max
Lungarella, Fumiya Iida, Josh Bongard, and Rolf Pfeifer (eds), 50 Years of Artificial
Intelligence, 18–28, Berlin and Heidelberg: Springer.

Stjernfelt, F. (2007), Diagrammatology: An Investigation on the Borderlines of Phenomenology,
Ontology, and Semiotics. Berlin: Springer.

Sutherland, I. E. (1963), ‘Sketchpad: A Man-Machine Graphical Communication System’,
in Proceedings of the 21–23 May 1963, Spring Joint Computer Conference, 329–46,
New York: ACM.

Tanaka-Ishii, K. (2010), Semiotics of Programming, New York: Cambridge University Press.
Tedre, M. (2014), The Science of Computing: Shaping a Discipline, Boca Raton: CRC Press.
Turbak, F. and D. Gifford (2008), Design Concepts in Programming Languages, Cambridge,

MA: MIT Press.
Turing, A. M. (1937), ‘On Computable Numbers, with an Application to the

Entscheidungsproblem’, Proceedings of the London Mathematical Society, Series 2, 42 (1):
230–65.

Turner, R. (2018), Computational Artifacts: Towards a Philosophy of Computer Science, Berlin:
Springer.

Von Neumann, J. (1987), ‘First Draft of a Report on the EDVAC (1945)’, in William Aspray
and Arthur W. Burks (eds), Papers of John von Neumann on Computers and Computing
Theory, 17–82, Cambridge, MA: MIT Press.

9781350139329_txt_rev.indd 236 08-07-2022 17:05:37

SEMIOTICS IN COMPUTING AND INFORMATION SYSTEMS	 237

von Plato, J. (2017), The Great Formal Machinery Works: Theories of Deduction and
Computation at the Origins of the Digital Age, Princeton: Princeton University Press.

Waldrop, M. M. (2001), The Dream Machine: J.C.R. Licklider and the Revolution That Made
Computing Personal, New York: Viking Penguin.

Webb, J. C. (1980), Mechanism, Mentalism and Metamathematics: An Essay on Finitism,
Dordrecht: Reidel.

Wegner, P. (1997), ‘Why Interaction Is More Powerful Than Algorithms’, Communications of
the ACM, 40 (5): 80–91.

Winograd, T. (1997), ‘The Design of Interaction’, in Peter J. Denning and Robert M. Metcalfe
(eds), Beyond Calculation: The Next Fifty Years of Computing, 149–62, New York:
Springer.

Winograd, T. and F. Flores (1987), Understanding Computers and Cognition: A New
Foundation for Design, Reading, MA: Addison-Wesley.

Zhang, J. and V. L. Patel (2006), ‘Distributed Cognition, Representation, and Affordance’,
Pragmatics & Cognition, 14 (2): 333–41.

Zittrain, J. (2009), The Future of the Internet – And How to Stop It, New Haven, CT: Yale
University Press.

9781350139329_txt_rev.indd 237 08-07-2022 17:05:37

